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Abstract

Non-adhesive and water-repellent surfaces are required for many tribological applications.
Roughness-induced superhydrophobicity has been suggested as a way to reduce adhesion and
stiction. In this paper, the theory of roughness-induced superhydrophobicity is presented.
Wetting is studied as a multiscale process involving the macroscale (water droplet size),
microscale (surface texture size), and nanoscale (molecular size). We study fundamental
physical mechanisms of wetting, including the transition between various wetting regimes,
contact angle and contact angle hysteresis. The effect of surface roughness upon wetting and
capillary adhesion force is discussed. Practical recommendations for the design of

superhydrophobic surfaces are formulated.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Numerous micro/nanotribological and micro/nanomechanical
applications, such as the micro/nanoelectromechanical systems
(MEMS/NEMS), require surfaces with low adhesion and
stiction (Bhushan er al 1995, Bhushan 1998, 2003, 2007). As
the size of these devices decreases, the surface forces tend to
dominate over the volume forces, and adhesion and stiction
constitute a challenging problem for proper operation of these
devices. This makes the development of non-adhesive surfaces
crucial for many of these emerging applications. It has been
suggested that extremely water-repellent (superhydrophobic)
surfaces produced by applying a micropatterned roughness
combined with hydrophobic coatings may satisfy the need
for the non-adhesive surfaces (Nosonovsky and Bhushan
2005, 2006a, 2006b, 2007a, 2007b, Bhushan et al 2007).
Wetting may lead to the formation of menisci at the interface
between solid bodies during sliding contact, which increases
adhesion/friction. As a result of this, the wet friction force is
greater than the dry friction force, which is usually undesirable
(Bhushan 1999, 2002, 2005). On the other hand, high adhesion
is desirable in some applications, such as adhesive tapes
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and the adhesion of cells to biomaterial surfaces, therefore,
enhanced wetting by changing roughness would be desirable
in these applications (Nosonovsky and Bhushan 2005, 2006a).

The primary parameter that characterizes wetting is the
static contact angle, which is defined as the measurable angle
which a liquid makes with a solid. The contact angle depends
on several factors, such as roughness and the manner of surface
preparation and its cleanliness (Adamson 1990, Israelachvili
1992). If the liquid wets the surface (referred to as a wetting
liquid or a hydrophilic surface), the value of the static contact
angle is 0° < 6 < 90°, whereas if the liquid does not wet the
surface (referred to as a non-wetting liquid or a hydrophobic
surface), the value of the contact angle is 90° < 6 < 180°.
The term hydrophobic/-philic, which was originally applied
only to water (‘hydro’ means ‘water’ in Greek), is often used
to describe the contact of a solid surface with any liquid. The
term ‘oleophobic/-philic’ is sometimes used with regard to the
wetting by oil. Surfaces with high energy, formed by polar
molecules, tend to be hydrophilic, whereas those with low
energy and built of non-polar molecules tend to be hydrophilic.

Surfaces with a contact angle between 150° and 180°
are called superhydrophobic. For liquid flow applications, in
addition to high contact angle, superhydrophobic surfaces also
have very low water contact angle hysteresis. The contact

© 2008 IOP Publishing Ltd  Printed in the UK
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Figure 1. (a) Schematics of a droplet on a tilted substrate showing
advancing (6,qv) and receding (fy..) contact angles. The difference
between these angles constitutes the contact angle hysteresis.
Configurations described by the Wenzel equation for the
homogeneous interface (equation (1)), (b) the Cassie—Baxter
equation for the composite interface with air pockets (equation (3)),
and (c) the Cassie equation for the homogeneous interface
(equation (4)).

angle hysteresis is the difference between the advancing and
receding contact angles, which are two stable values. If
additional liquid is added to a sessile drop the contact line
advances, and each time motion ceases the drop exhibits an
advancing contact angle. Alternatively, if liquid is removed
from the drop the contact angle decreases to a receding value
before the contact retreats. For a droplet moving along the
solid surface (for example, if the surface is tilted) there is
another definition. The contact angle at the front of the droplet
(advancing contact angle) is greater than that at the back of the
droplet (receding contact angle), due to roughness, resulting in
the contact angle hysteresis (figure 1(a)). It has been disputed
that the two definitions are equivalent (Krasovitski and Marmur
2004); however, in many cases the two definitions have the
same meaning. Surfaces with low contact angle hysteresis
have a very low water roll-off angle which denotes the angle
to which a surface must be tilted for roll off of water drops
(i.e. very low water contact angle hysteresis) (Extrand 2002,
Kijlstra et al 2002).

One of the ways to increase the hydrophobic or
hydrophilic properties of the surface is to increase surface
roughness, so roughness-induced hydrophobicity has become
a subject of extensive investigation. Wenzel (1936) found
that the contact angle of a liquid with a rough surface is

different from that with a smooth surface. Cassie and Baxter
(1944) showed that air (or gas) pockets may be trapped in the
cavities of a rough surface, resulting in a composite solid—
liquid—air interface, as opposed to a homogeneous solid-liquid
interface. Shuttleworth and Bailey (1948) studied spreading
of a liquid over a rough solid surface and found that the
contact angle at the absolute minimum of surface energy
corresponds to the values predicted by Wenzel (1936) or Cassie
and Baxter (1944). Johnson and Dettre (1964) showed that the
homogeneous and composite interfaces correspond to the two
metastable equilibrium states of a droplet. Bico et al (2002),
Marmur (2003, 2004), Lafuma and Quéré (2003), Patankar
(2003, 2004a), He et al (2003) and other authors recently
investigated the metastability of artificial superhydrophobic
surfaces and showed that whether the interface is homogeneous
or composite may depend on the history of the system (in
particular, whether the liquid was applied from the top or
from the bottom). Extrand (2002) pointed out that whether
the interface is homogeneous or composite depends on droplet
size, due to gravity. It was suggested also that the so-called
two-tiered (or double) roughness, made up of superposition of
two roughness patterns at different length-scales (Herminghaus
2000, Patankar 2004b, Sun et al 2005), and fractal roughness
(Shibuichi et al 1996) may lead to superhydrophobicity.
Herminghaus (2000) showed that certain self-affine profiles
may result in superhydrophobic surfaces even for wetting
liquids, in the case the local equilibrium condition for the
triple line (line of contact between solid, liquid and air) is
satisfied. Nosonovsky and Bhushan (2005, 2006a) pointed out
that such configurations, although formally possible, are likely
to be unstable. Nosonovsky and Bhushan (2006a, 2006b)
proposed a stochastic model for wetting of rough surfaces with
a certain probability associated with every equilibrium state.
According to their model, the overall contact angle with a
two-dimensional rough profile is calculated by assuming that
the overall configuration of a droplet occurs as a result of
superposition of numerous metastable states. The probability-
based concept is consistent with the experimental data (Lafuma
and Queéré 2003), which suggest that transition between the
composite and homogeneous interfaces is gradual rather than
instant.

It has been demonstrated experimentally that roughness
changes the contact angle in accordance with the Wenzel
model. Yost et al (1995) found that roughness enhances
wetting of a copper surface with Sn—Pb eutectic solder, which
has a contact angle of 15°-20° for a smooth surface. Shibuichi
et al (1996) measured the contact angle of various liquids
(mixtures of water and 1,4-dioxane) on alkylketene dimer
(AKD) substrate (contact angle not larger than 109° for a
smooth surface). They found that for wetting liquids the
contact angle decreases with increasing roughness, whereas
for non-wetting liquids it increases. Semal et al (1999)
investigated the effect of surface roughness on contact angle
hysteresis by studying a sessile droplet of squalane spreading
dynamically on multilayer substrates (behenic acid on glass)
and found that an increase in microroughness slows the rate
of droplet spreading. Erbil ef al (2003) measured the contact
angle of polypropylene (contact angle of 104° for a smooth



J. Phys.: Condens. Matter 20 (2008) 225009

M Nosonovsky and B Bhushan

surface) and found that the contact angle increases with
increasing roughness. Burton and Bhushan (2005) measured
contact angle with roughness of patterned surfaces and found
that in the case of hydrophilic surfaces it decreases with
increasing roughness, and for hydrophobic surfaces it increases
with increasing roughness. Jung and Bhushan (2006, 2007)
and Bhushan and Jung (2007) studied the wetting properties of
hydrophobic and hydrophilic leafs and patterned surfaces and
found similar trends.

In the last decade, material scientists have given attention
to natural surfaces that are extremely hydrophobic. Among
them are the leaves of water-repellent plants such as Nelumbo
nucifera (lotus) and Colocasia esculenta, which have high
contact angles with water (Neinhuis and Barthlott 1997,
Barthlott and Neinhuis 1997, Wagner et al 2003). First, the
surface of the leaves is usually covered with a range of different
waxes made from a mixture of hydrocarbon compounds that
have are strongly hydrophobic. Second, the surface is very
rough due to so-called papillose epidermal cells which form
asperities or papillae. In addition to the microscale roughness
of the leaf due to the papillae, the surface of the papillae
is also rough with submicron sized asperities composed of
the wax (Wagner et al 2003). Thus they have hierarchical
micro- and nanosized structures, which have been studied
extensively by Bhushan and Jung (2006). The water droplets
on these surfaces readily sit on the apex of nanostructures
because air bubbles fill in the valleys of the structure under
the droplet. Therefore, these leaves exhibit considerable
superhydrophobicity. The water droplets on the leaves remove
any contaminant particles from the surfaces when they roll
off, leading to a self cleaning ability referred to as the lotus-
effect. Other examples of biological surfaces include duck
feathers and butterfly wings. Their corrugated surfaces provide
air pockets that prevent water from completely touching the
surface. Study and simulation of biological objects with
desired properties is referred to as ‘biomimetics’, which comes
from a Greek word ‘biomimesis’ meaning to mimic life.

As far as the realization of strongly water-repellent
artificial surfaces is concerned, they can be constructed
by chemically treating surfaces with low-surface-energy
substances such as polytetrafluoroethylene, silicon, or wax, or
by fabricating extremely rough hydrophobic surfaces directly
(Shibuichi et al 1996, Miwa et al 2000, He et al 2003,
Kijlstra et al 2002). Sun et al (2005) studied an artificial
poly(dimethylsiloxane) (PDMS) replica of the surface of a
lotus leaf and found a water contact angle of 160° for the rough
surface, whereas for the smooth PDMS surface it is about 105°.

As stated earlier, when two solids come in contact in
the presence of a wetting liquid, a meniscus is often formed
(Bhushan 1999, 2002, 2003, 2005). A meniscus results in the
normal meniscus force, which, in turn, results in an increase
in the tangential friction force. The magnitude of the meniscus
force depends on the number of asperity contacts and asperity
radii, which depend on roughness, and on surface tension of the
liquid and the contact angle. The contact angle, as stated above,
depends on surface roughness, and thus roughness affects the
wet friction force (Nosonovsky and Bhushan 2005). In the
present paper we will discuss the contact angle and contact

angle hysteresis of a liquid droplet upon rough surfaces, as
well as stability and the transition between wetting regimes.
The effect of roughness upon the adhesion force will also be
discussed.

2. Contact angle analysis

In this section, the dependence of the contact angle on the
surface tension is considered for a liquid in contact with a
smooth and a rough solid surface, forming a homogeneous
interface. The surface atoms or molecules of liquids or solids
have energy above that of similar atoms and molecules in
the interior, which results in surface tension or free surface
energy being an important surface property. This property
is characterized quantitatively by the surface tension or free
surface energy y, which is equal to work that is required
to create a unit area of the surface at constant volume and
temperature. The units of  are J m~2 or N m~! and it can be
interpreted either as energy per unit surface area or as tension
force per unit length of a line at the surface. When a solid is
in contact with liquid, the molecular attraction will reduce the
energy of the system below that for the two separated surfaces.
This may be expressed by the Dupré equation

WsL = vsa + LA — ¥sL (D

where Wgy is the work of cohesion per unit area between two
surfaces, ysa and ysp, are the surface energies (surface tensions)
of the solid against air and liquid, and y4 4 is the surface energy
(surface tension) of liquid against air (Israelachvili 1992).

If a droplet of liquid is placed on a solid surface, the
liquid and solid surfaces come together under equilibrium at
a characteristic angle called the static contact angle 6. This
contact angle can be determined from the condition of the net
free surface energy of the system being minimized (Adamson
1990, Israelachvili 1992). The total energy Ey is given by

Eot = YLa(Ara + Asp) — WspAsL 2

where Apa and Agp are the contact areas of the liquid with
the solid and air, respectively. It is assumed that the droplet is
small enough so that the gravitational potential energy can be
neglected. It is also assumed that the volume and pressure are
constant, so that the volumetric energy does not change. At the
equilibrium dE,; = 0, which yields

vLa(dApa 4+ dAsy) — WspdAg, = 0. 3)

For a droplet of constant volume it is easy to show, using
geometrical considerations, that

dApa/dAgL = cos . “)

Combining equations (1), (3), and (4), the well-known Young
equation for the contact angle is obtained:

cos by = saTysL (5)

VLA
Equation (5) provides us with the value of the static contact
angle for given surface tensions. Note that although we use the
term ‘air’, the analysis does not change in the case of another
gas, such as a liquid vapor.
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3. Heterogeneous surfaces and the Wenzel and Cassie
equations

In this section, we will discuss the so-called heterogeneous
interface and introduce the equations that govern the contact
angle for the heterogeneous interface.

3.1. Contact angle with rough and heterogeneous surfaces

The Wenzel (1936) equation, which was derived using the
surface force balance and empirical considerations, relates the
contact angle of a water droplet upon a rough solid surface,
0, with that upon a smooth surface, 6y (figure 1(b)), through
the non-dimensional surface roughness factor, Ry, equal to the
ratio of the surface area to its flat projection

dA dAg dA
cosf = —2 — SL LA Rt cos 6 (6)
dAg dAr dAgp
AsL
Ry = —. 7
A (7

In a similar manner, for a surface composed of two
fractions, one with fractional area f; and contact angle 6; and
the other with f, and 0,, respectively (so that f; + f» = 1), the
contact angle is given by the Cassie equation

cos6 = ficosO; + f>cosb,. (8)

For the case of a composite interface (figure 1(c)), consisting
of the solid—liquid fraction (f; = fs., 01 = 6p) and liquid—
vapor fraction (f» = 1 — fsr, cos8, = —1), combining the
equations (7) and (8) yields the Cassie—Baxter equation

cos® = Rgfspcosy — 1+ fsr. )

The opposite limiting case of cosf, = 1 (6, = 0°
corresponds to water-on-water contact) yields

cos =1+ fsL(cosby — 1). (10)

Equation (10) is sometimes used (de Gennes et al 2003) for
the homogeneous interface instead of equation (6) if the rough
surface is covered by holes filled with water (figure 1(d)).

3.2. The Cassie—Baxter equation

Two situations in wetting of a rough surface should be
distinguished: a homogeneous interface without any air
pockets (sometimes called a Wenzel interface, since the contact
angle is given by the Wenzel equation or equation (6)) and a
composite interface with air pockets trapped between the rough
details (sometimes called a Cassie or Cassie—Baxter interface,
since the contact angle is given by equation (9)). While
equation (9) for a composite interface can be derived using
equations (6) and (8), it can also be obtained independently.
For this purpose, two sets of interfaces are considered: a
liquid—air interface with the ambient and a flat composite
interface under the droplet, which itself involves solid—
liquid, liquid—air, and solid—air interfaces. For fractional flat
geometrical areas of the solid—liquid and liquid—air interfaces

under the droplet, fs1, and fia, the flat area of the composite
interface is

Ac = fsLAc + fiaAc = RiAsL + fLaAc. (11

In order to calculate the contact angle in a manner similar to the
derivation of equation (6), the differential area of the liquid—
air interface under the droplet, fia dAc, should be subtracted
from the differential of the total liquid—air area dApa, which
yields
dApa — fiadAc _ dAgL dAp dApa
dAc "~ dAfp dAc dAg
= Ry fsLcos Oy — fra- (12)

According to equation (12) (which is equivalent to equa-
tion (9)) in the limit of high Ry, fsi approaches zero, whereas
fra approaches unity, and hence 6 approaches 180°. However,
the Cassie-Baxter model does not provide any particular form
of dependence of fs; and fio on Rf and does not explain under
which conditions the composite interface forms.

Shuttleworth and Bailey (1948) studied spreading of a
liquid over a rough solid surface and found that the contact
angle at the absolute minimum of surface energy corresponds
to the values given by equation (6) (for a homogeneous
interface) or equation (12) (for a composite interface).
According to their analysis, spreading of a liquid continues
until simultaneously equation (5) (the Young equation) is
satisfied locally at the triple line and the minimal surface
condition is satisfied over the entire liquid—air interface. The
minimal surface condition states that the sum of the inverse
principal radii of curvature, R; and R;, is constant at any point,
and thus governs the shape of the liquid—air interface.

cosf =

— fia

1 1
— + — = const.

13
RTR (13)

Johnson and Dettre (1964) showed that the homogeneous
and composite interfaces correspond to the two stable or
metastable states of a droplet. Even though it may be
geometrically possible for the system to become composite,
it may be energetically profitable for the liquid to penetrate
into valleys between asperities and to form a homogeneous
interface. Marmur (2003) formulated the geometrical
conditions for a surface under which the energy of the system
has a local minimum and the composite interface may exist.
Patankar (2004a) pointed out that whether a homogeneous or
composite interface exists depends on the system’s history,
i.e. on whether the droplet was formed at the surface or
deposited. However, the above-mentioned analyses do not
provide us with the answer of which of the two possible
configurations, homogeneous or composite, will actually form.

3.3. Limitations of the Wenzel and Cassie equations

The Cassie equation (equation (8)) is based on the assumption
that the heterogeneous surface is composed of well-separated
distinct patches of different material, so that the free surface
energy can be averaged. It has been argued also that when the
size of the chemical heterogeneities is very small (of atomic
or molecular dimensions), the quantity that should be averaged



J. Phys.: Condens. Matter 20 (2008) 225009

M Nosonovsky and B Bhushan

Table 1. Wetting of a superhydrophobic surface as a multiscale process.

Scale level ~ Characteristic length Parameters Phenomena Interface

Macroscale  Droplet radius (mm) Contact angle, Contact angle 2D
droplet radius hysteresis

Microscale  Roughness detail (um)  Shape of the droplet, Kinetic effects 3D solid surface,
position of the 2D liquid surface
liquid—vapor interface (/)

Nanoscale Molecular Molecular description Thermodynamic 3D

heterogeneity (nm)

and dynamic effects

is not the energy but the dipole moment of a macromolecule
(Israelachvili and Gee 1989), and equation (8) should be
replaced by

(14cos0)? = fi(1 +cosb)> + fo(1 +cosbr)>. (14

Experimental studies of polymers with different functional
groups showed a good agreement with equation (14)
(Tretinnikov 2000).

Later investigations put the Wenzel and Cassie equations
into a thermodynamic framework; however, they also showed
that there is no one single value of the contact angle for a
rough or heterogeneous surface (Johnson and Dettre 1964,
Marmur 2003, Li and Amirfazli 2006). The contact angle
can be in a range of values between the so-called receding
contact angle, 6., and the advancing contact angle, 0,4y. The
system tends to achieve the receding contact angle when liquid
is removed (for example, at the rear end of a moving droplet),
whereas the advancing contact angle is achieved when the
liquid is added (for example, at the front end of a moving
droplet). When the liquid is neither added nor removed, the
system tends to have a static or ‘most stable’ contact angle,
which is given approximately by equations (5)—(10). The
difference between 0,4y and ;.. is known as the ‘contact angle
hysteresis’ and it reflects a fundamental asymmetry of wetting
and dewetting and the irreversibility of the wetting/dewetting
cycle. Although for surfaces with a roughness that is carefully
controlled on the molecular scale it is possible to achieve
contact angle hysteresis as low as <1° (Gupta et al 2005),
it cannot be eliminated completely, since even the atomically
smooth surfaces have a certain roughness and heterogeneity.
The contact angle hysteresis is a measure of energy dissipation
during the flow of a droplet along a solid surface. A water-
repellent surface should have a low contact angle hysteresis to
allow water to flow easily along the surface.

It is emphasized that the contact angle provided by
equations (5)-(10) is a macroscale parameter, so it is
sometimes called ‘the apparent contact angle’. The actual
angle under which the liquid—vapor interface comes into
contact with the solid surface at the micro- and nanoscale can
be different. There are several reasons for that. First, water
molecules tend to form a thin layer upon the surfaces of many
materials. This is because of a long-distance van der Waals
adhesion force that creates the so-called disjoining pressure
(Derjaguin and Churaev 1974). This pressure is dependent
upon the liquid layer thickness and may lead to formation of
stable thin films. In this case, the shape of the droplet near
the triple line gradually transforms from a spherical surface

into a precursor layer, and thus the nanoscale contact angle
is much smaller than the apparent contact angle. In addition,
adsorbed water monolayers and multilayers are common for
many materials. Second, even carefully prepared atomically
smooth surfaces exhibit a certain roughness and chemical
heterogeneity. At first water tends to cover the hydrophilic
spots with high surface energy and low contact angle (Checco
et al 2003). The tilt angle due to the roughness can also
contribute into the apparent contact angle. Third, the very
concept of a static contact angle is not well defined. For
practical purposes, the contact angle which is formed after a
droplet is gently placed upon a surface and stops propagating is
considered to be the static contact angle. However, depositing
the droplet involves adding liquid while leaving it may involve
evaporation, so it is difficult to avoid dynamic effects. Fourth,
for small droplet and curved triple lines, the effect of the
contact line tension may be significant. Molecules at the
surface of a liquid or solid phase have higher energy because
they are bonded to fewer molecules than those in the bulk.
This leads to the surface tension and surface energy. In
a similar manner, molecules at the edge have fewer bonds
than those at the surface, which leads to the line tension and
the curvature dependence of the surface energy. This effect
becomes important when the radius of curvature is comparable
with the so-called Tolman length, normally of the order of
molecular size (Anisimov 2007). However, the triple line at the
nanoscale can be curved so that the line tension effects become
important (Pompe et al 2000). Thus while the contact angle
is a convenient macroscale parameter, wetting is governed
by interactions at the micro- and nanoscale, which determine
the contact angle hysteresis and other wetting properties
(table 1).

3.4. Range of applicability of the Wenzel and Cassie equations

Gao and McCarthy (2007) showed experimentally that the
contact angle of a droplet is defined by the triple line and
does not depend upon the roughness under the bulk of
the droplet. A similar result for chemically heterogeneous
surfaces was obtained by Extrand (2003). Gao and McCarthy
(2007) concluded that the Wenzel and Cassie-Baxter equations
‘should be used with the knowledge of their fault’. The
question remained, however, under what circumstances the
Wenzel and Cassie-Baxter equations can be safely used and
under what circumstances they become irrelevant.

For a liquid front propagating along a rough two-
dimensional profile (figures 2(a) and (b)), the derivative of the
free surface energy (per liquid front length), W, by the profile
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Table 2. Summary of experimental results for uniform and non-uniform rough and chemically heterogeneous surfaces. For non-uniform
surfaces, the results shown are for droplets larger than the islands of non-uniformity. Detailed quantitative values of the contact angle in
various sets of experiments can be found in the referenced sources (Nosonovsky 2007c).

Roughness/ Experimental contact ~ Theoretical Theoretical contact
hydrophobicity at the ~ Roughness at angle (compared contact angle, angle, generalized
triple line and at the the bulk (under  with that at the rest Wenzel/Cassie ~ Wenzel-Cassie
Experiment rest of the surface the droplet) of the surface) equations (equations (16) and (17))
Gao and McCarthy (2007)  Hydrophobic Hydrophilic Not changed Decreased Not changed
Rough Smooth Not changed Decreased Not changed
Smooth Rough Not changed Increased Not changed
Extrand (2003) Hydrophilic Hydrophobic Not changed Increased Not changed
Hydrophobic Hydrophilic Not changed Decreased Not changed
Bhushan et al (2007) Rough Rough Increased Increased Increased
Barbieri et al (2007) Rough Rough Increased Increased Increased
(a) x the local value of r(x) = dr/dx = (1 + (dz/dx)?)'/?

= Liquid = =

Solid | dx |

Figure 2. Liquid front in contact with (a) a smooth solid surface and
(b) arough solid surface. Propagation for a distance d¢ along the
curved surface corresponds to the distance dx along the horizontal
surface. (c) Surface roughness under the bulk of the droplet does not
affect the contact angle.

length, ¢, yields the surface tension force 0 = dW/dr =
ysL — vsy. The quantity of practical interest is the component
of the tension force that corresponds to the advancing of the
liquid front in the horizontal direction for dx. This component
is given by dW/dx = (dW/d¢t)(dt/dx) = (ysL — ysv) dt/dx.
It is noted that the derivative Ry = dr/dx is equal to
Wenzel’s roughness factor in the case when the roughness
factor is constant throughout the surface. Therefore, the Young
equation, which relates the contact angle with solid, liquid, and
vapor interface tensions, yry cosf = ysy — ysi, is modified as
(Nosonovsky 2007¢)

5)

The empirical Wenzel equation (equation (6)) is a consequence

of equation (15) combined with the Young equation.
Nosonovsky (2007c) showed that for a more complicated

case of a non-uniform roughness, given by the profile z(x),

yLv €os 0 = Ri(ysy — ¥sL).

matters. In the cases that were studied experimentally by Gao
and McCarthy (2007) and Extrand (2003), the roughness was
present ( > 1) under the bulk of the droplet, but there was
no roughness (r = 0) at the triple line, and the contact angle
was given by equation (6) (figure 2(c)). In the general case of a
3D rough surface z(x, y), the roughness factor can be defined
as a function of the coordinates r(x,y) = (1 + (dz/dx)*> +
(dz/dy)*)'/>.

Whereas equation (6) is valid for uniformly rough
surfaces, that is, surfaces with » = const, for non-uniformly
rough surfaces the generalized Wenzel equation is formulated
to determine the local contact angle (a function of x and y)
with a rough surface at the triple line

cosf =r(x,y)cosby. (16)
Equation (6) is consistent with the experimental results of
the worker who showed that roughness beneath the droplet
does not affect the contact angle, since it predicts that only
roughness at the triple line matters. It is also consistent
with the results of the researchers who confirmed the Wenzel
equation (for the case of the uniform roughness) and of those
who reported that only the triple line matters (for non-uniform
roughness) (table 2).

The Cassie equation for the composite surface can be
generalized in a similar manner, introducing the spatial
dependence of the local densities f] and f, of the solid-liquid
interface with the contact angle, as a function of x and y, given
by

Cos ecomposite = fl (x, y) cost + f2 (x, y) cos 6 a7
where f1 + f> = 1 and 0, and 6, are contact angles of the two
components (Nosonovsky 2007¢).

The important question remains, what should be the
typical size of roughness/heterogeneity details in order for
the generalized Wenzel and Cassie equations (equations (16)
and (17)) to be valid? Some researchers have suggested
that roughness/heterogeneity details should be comparable
with the thickness of the liquid—vapor interface and thus
‘the roughness would have to be of molecular dimensions to
alter the equilibrium conditions’ (Bartell and Shepard 1953),
whereas others have claimed that roughness/heterogeneity
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details should be small compared with the linear size of the
droplet (Johnson and Dettre 1964, Li and Amirfazli 2006,
Bhushan er al 2007, Barbieri et al 2007). The interface in our
analysis is an idealized 2D object, which has no thickness. In
reality, the triple line zone has two characteristic dimensions:
the thickness (of the order of the molecular dimensions) and
the length (of the order of the droplet size).

The apparent contact angle, given by equations (16)
and (17), may be viewed as the result of averaging of the
local contact angle at the triple line by its length, and thus
the size of the roughness/heterogeneity details should be small
compared with the length (and not the thickness) of the
triple line. When the liquid—vapor interface is studied at the
length scale of the roughness/heterogeneity details, the local
contact angle, 0y, is given by equations (6)—(10). The liquid—
vapor interface at that scale has perturbations caused by the
roughness/heterogeneity, and the scale of the perturbations is
the same as the scale of the roughness/heterogeneity details.
However, when the same interface is studied at a larger scale,
the effect of the perturbation vanishes, and the apparent contact
angle is given by equations (16) and (17) (figure 2(c)). This
apparent contact angle is defined at the scale length, for which
the small perturbations of the liquid—vapor interface vanish,
and the interface can be treated as a smooth surface. The
values of r(x,y), fi(x,y), and f>(x,y) in equations (16)
and (17) are average values for an area (x, y) with size larger
than a typical roughness/heterogeneity detail size. Therefore,
the generalized Wenzel and Cassie equations can be used at
the scale at which the effect of the interface perturbations
vanish, or, in other words, when the size of the solid surface
roughness/heterogeneity details is small compared with the
size of the liquid—vapor interface, which is of the same order
as the size of the droplet.

We used the surface energy approach to find the domain of
validity of the Wenzel and Cassie equations (uniformly rough
surfaces) and generalized it for a more complicated case of
non-uniform surfaces. The generalized equations explain a
wide range of existing experimental data, which could not be
explained by the original Wenzel and Cassie equations.

4. Calculation of the contact angle for selected
surfaces

The contact angle of a liquid with a number of rough surfaces
is calculated in this section. The model presented in the
preceding sections combines the effect of surface area, the
possibility of formation of a composite interface, and the effect
of sharp edges. Several selected rough surfaces are considered
(shown in figure 3). First, two-dimensional surface profiles
are analyzed, followed by more complex three-dimensional
surfaces. Based on the analysis, roughness optimization for
the contact angle was conducted by Nosonovsky and Bhushan
(2005).

4.1. Two-dimensional periodic profiles

4.1.1. Sawtooth periodic profile. Let us consider a surface
with a sawtooth profile with a tooth angle (or the absolute value

Sawtooth periodic profile

VR VAVAVAN

Periodic profile

2mx

z(x) = Z A, sinT +8B, coszﬁ
n=1

A

A surface with rectangular asperities
A
A surface with hemispherically topped
cylindrical asperities
hI r

5

A surface with conical or pyramidal asperities

AN NN

2r
<>

Random Gaussian surface

c, B

W

Figure 3. Various rough surfaces (Nosonovsky and Bhushan 2005).

of slope) of « (figure 3). Using equation (6), the roughness
factor is calculated as

Ast

Ry = = (cosa) L. 18
= (cos) (18)
Using equation (6), the contact angle is given as
cos Oy
cost = . (19)
cos o

An increase of o above oy = 180° — 6y will result in a
transition from a complete solid-liquid contact to a composite
solid—liquid—air interface, and equation (19) cannot be used
any further. Substituting the value of slope ¢ = «g into
equation (19), the value of 6, which corresponds to ¢, can
be obtained; this gives that the critical value ¢ corresponds to
the contact angle & = 180°. This means that by increasing
the tooth angle toward the critical value, a surface with a
contact angle approaching 180° can be produced for a given 6.
However, sharp edges, which may lead to pinning of the triple
line, make the sawtooth profile undesirable. In addition to this,
the sawtooth profile provides roughness only in the direction
perpendicular to the grooves, which may act as open capillaries
to reinforce wetting, which is also undesirable (Nosonovsky
and Bhushan 2005).
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4.1.2. General periodic profile. For a general form of the
surface z(x, y), the solid-liquid area of contact is equal to

0z\2 dz\2
AsL = Ag 1+ (—) + (—) dx dy.
J ax ay
F

A periodic two-dimensional surface profile with the period A
can be presented as a Fourier series

(20)

e 2mwnx 2 nx
z(x) = Z A, sin + B, cos 21
n=1
The derivatives of z(x) are given as
dz 27 2mnx . 2mnx
= — Ann cos — B,nsin
dx A f
"= (22)
dz _
dy

Substituting equations (22) and (20) into equation (7) provides
us with an expression for the roughness factor of a periodic
profile (Nosonovsky and Bhushan 2005)

vt

It is possible to determine whether a composite interface
is possible by considering the slope of the profile. In order for
a composite interface to form, the absolute value of the slope
must exceed the critical angle ¢ at any point

2
. 2mnx
— B,nsin 5 dx.

(23)

42
+L(ZA ncos

2m Z A,ncos 2mnx — B,nsin > tan(ag)
N —~ A
= tan(—6y). (24)
As an example, let us consider a sinusoidal profile
z(x) = A;sin ZJTTX (25)

By substituting equation (25) into (23) and integrating,
a closed-form solution can be obtained (Nosonovsky and
Bhushan 2005):

A
Ry = l/ V14 Qr A /A)? cos?(2mx /) dx

\/1 + (2m A /)2 cos? x dx

T2 )y
2 /2 QmA /N2
- _1%2/ __Qra/m?
- 1+ Q2rA/X) ; 1 T+ QA /1)2 sin“x dx
2y (ZnAl/k)2E<M) (26)
T V14 @QrA/r)?

where E(x) is the so-called elliptical integral of the second
kind, the values of which are tabulated in handbooks

/2
E (k) =/ V1 — k?sin® x dx.
0

27

The maximum absolute value of the slope of the sinusoidal
profile (equation (25)) is achieved at x = 0 and is equal to
2w Ay/A. With an increase of A;/A the slope increases, and
a composite interface may be formed (figure 4(a)). For a
composite interface to form, the slope at some points should
exceed the critical value «p. By using equation (24) and setting
x = 0, the condition for existence of the composite interface is

found as
2w A 1

(28)

The contact angle can be calculated by substituting Ry
from equation (26) into (6). The dependence of the contact
angle on amplitude for the sinusoidal profile is presented in
figure 4(a). It is observed, that lower values of 6 correspond to
lower values of 6, at the transition to the composite interface,
unlike in the case of the sawtooth surface which has critical
values corresponding to 6y = 180°. For 6y = 100° the critical
value of Ry = 5.67 (6 = 131°), for 6, = 120° the critical
value of Ry = 1.73 (6 = 140°), and for 8y = 150° the
critical value of Ry = 0.58 (§ = 159°). Further increase
of A;/X may lead to a corresponding increase of Ry and 6
(Zhou and De Hosson 1995). However, as will be discussed
below, the composite interface can be destabilized. Therefore,
the sinusoidal interface is not recommended for producing
superhydrophobic surfaces. In addition to this, the sinusoidal
profile provides roughness only in the direction perpendicular
to the grooves, which may act as open capillaries to reinforce
wetting, which is also undesirable (Nosonovsky and Bhushan
2005).

4.2. Three-dimensional surfaces

The analysis of profiles provides critical values of the
roughness parameters in the case when the contact line is
parallel to the grooves. Three-dimensional surfaces, which
constitute a more general case, with various typical shapes of
asperities are considered in this subsection.

4.2.1. Array of asperities of identical shape and size. Let
us consider a rough surface with rectangular asperities, which
have a square foundation with side 2r and height & (figure 3).
For each asperity, the area of surface is given by

Ausp = 8rh + 4r? (29)

whereas the flat projection area is 4r>. Assuming that asperities
are randomly distributed throughout the surface with a density
of n asperities per unit area, the total contact surface area is
given by

Ast = Ap+Apn(8rh+4rY) — Apdnr? = Ap(1+8nr?). (30)
The roughness factor is found using equations (7) and (30)
Ri=1+8nyrh=1+2p*h/r (31)

where p is a packing parameter which characterizes the
packing of the asperities; for asperities with a square
foundation, p = 2r./n. The packing parameter is equal to
the fraction of the surface area which is covered by asperities.
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Figure 4. (a) Contact angle for a rough surface (9) as a function of surface parameters for a surface with a sinusoidal profile, rectangular
(dotted line)/hemispherically topped cylindrical (solid line) and conical/pyramidal asperities. (b) Dependence of the roughness factor (R¢) and
contact angle for rough surface () on roughness parameters for a Gaussian surface (Nosonovsky and Bhushan 2005).

In a similar manner R; can be calculated for asperities with
cylindrical foundation of height 4 and hemispherical top of
radius r (figure 3). For each asperity, the area of surface is
given by

Agp = 2772 (L+h/r) (32)
whereas the flat projection area is given by 772, Assuming that
asperities are randomly distributed throughout the surface with
a density of 1 asperities per unit area, the total contact surface
area is given by
As = Ap + Apn2rr*(1+ h/r) — Apnmr?

= Ag[l + nar*(1 4 2h/r)]. (33)
The roughness factor is found using equations (7) and (33):

Ri=1+4nrr’(1+2h/r) =14 p*(A +2h/r)  (34)

where the packing parameter for asperities with a circular
foundation is p = r./mn (Nosonovsky and Bhushan 2005).

For conical asperities of height 4, radius 7, and side length
L = ~/h? 4+ r2, we can obtain in a similar manner

Awp =7r*(1+ L/7) (35)
AgL = Ap + Apnrr>(1+ L/r) — Apnmr® = Ag(1 4+ nrL)

= Ap(1 + 9r>/ T+ (h/r)?) (36)
and
Ry =1+4+nnrL=1+ 777'rr2\/ﬁh/r)2
=14 p*V1+ (h/r)? (37

where the packing parameter, for asperities with a circular
foundation, is p = r,/mn (Nosonovsky and Bhushan 2005).

For pyramidal asperities with square foundation of width
2a and height &, the corresponding quantities are given as

Awp = 47 (1 + 1+ (h/r)?) (38)
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Ast = Ap + 4Apr? (1 + /1 + (h/r)?) — 4Apnr?

= Ap(1 + 4r}r2W) (39)
and
Ri= 144021+ G/rt=1+p VIt G/r?  (40)

where the packing parameter, for asperities with a square
foundation, is p = 2r,/n (Nosonovsky and Bhushan 2005).

The dependence of the contact angle on the normalized
radius of the asperities (taken as p) for 6y = 120° and for
different ratios of 4 /r is presented in figure 4(a), on the basis
of equations (6), (31), (34), (38), and (40), for rectangular,
hemispherically topped, conical and pyramidal asperities. It
is observed that, with an increase in p, the value of the contact
angle increases and reaches 180°. For higher aspect ratios, the
increase in 0 is faster.

In order to determine the critical values of roughness
parameters, which correspond to the transition to the composite
interface, it should be analyzed whether the local slope
can exceed the critical value o and whether the composite
interface is likely to remain stable. It is difficult to conduct such
an analysis, due to its complexity; however, an estimate can
be made using the fact that with increasing average absolute
value of the slope of the surface both the local slope increases
and the destabilization of the composite interface becomes
less likely, since the surface is less smooth. Based on this,
we assume here that, in a similar manner as for the two-
dimensional profiles, the absolute value of the surface slope
is responsible for transition to the composite liquid—solid—
air interface, and consider an average absolute value of the
slope. For rectangular, hemispherically topped, conical, and
pyramidal asperities, the mean absolute value of the slope, m,
is equal to the density of the asperities and the flat projection
area times the average absolute value of the slope (equal to
twice the aspect ratio):

m = nur’(h/r) = nhr. “4n
The critical value can be found, using a similar approach to the
derivation of equations (24):
mo = nrhr = tan(180° — 6y) = tan(—6y). (42)
Based on equations (31), (34), (37), (40), and (42), it may be
shown that, for the selected value of 8y = 120°, for rectangular,
hemispherically topped, conical, and pyramidal asperities, the
contact angle may approach 180° before the critical value of
roughness is reached for the values of 4 /r shown in figure 4
(Nosonovsky and Bhushan 2005).

The equations developed here are used to calculate contact
angle for a lotus leaf and compare it with measured data.
The lotus leaf has almost hemispherically topped asperities
(papillae) which are covered with wax (Neinhuis and Barthlott
1997, Wagner et al 2003). The static contact angle for a
water droplet against a paraffin wax surface was reported by
Craig et al (1960) as 104° and by Kamusewitz et al (1999)
as 103°. Based on the data reported by Wagner et al (2003),
the number of asperities (papillae) can be estimated for the
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lotus leaf as 3400 mm~2 (n = 0.0034 um~2), the average
radius of hemispherically topped asperities r = 10 um, and the
aspect ratio h/r ~ 1. Based on equation (6), these parameter
values correspond to the roughness factor Ry ~ 4 and the
contact angle 6 = 165° (using 6y = 104° for wax). During
the measurements conducted in our lab, the value of the static
contact angle for deionized water on a lotus leaf was found
to be 156° £ 2° (Burton and Bhushan 2006). Neinhuis and
Barthlott (1997) reported a contact angle value of 162° for a
water droplet on a lotus leaf.

4.2.2. Random rough surface. A nominally flat random
rough surface can be considered as a superposition of a
flat plane and a two-dimensional random process, which is
characterized by a height distribution and an autocorrelation
function. Many engineered and natural rough surfaces can be
characterized by a Gaussian height distribution and exponential
autocorrelation function (Bhushan 1999, 2002). In this case,
a rough surface is described by only two parameters: the
standard deviation of asperity heights, o, and correlation
length, *. The correlation length 8*, is a spatial parameter and
it can be viewed as a measure of randomness. The correlation
length, B*, is responsible for the horizontal scale of the surface,
whereas o is responsible for the vertical scale of the surface.
Measured roughness is dependent on the short- and long-
wavelength limit of measurement (Bhushan 1999, 2002).

The absolute value of slope of a Gaussian surface also has
a Gaussian distribution with the mean

m =

\/ 1 — [exp(—B*/D?
[

b4
where [ is the sampling interval or short-wavelength limit,
which is a distance between data points during a measurement
(Whitehouse and Archard 1970). For a surface, the sampling
interval is given by a low-wavelength limit of the Gaussian
roughness, and is comparable with the atomic dimensions
(Nosonovsky and Bhushan 2005).

An element of the area of a surface with slopes of dz/0x
and dz/dy in the x- and y-directions is given by

(e

43)

dA = /1 + (9z/0x)* + (3z/dy)2dx dy. (44)

The distribution of \/l + (8z/0x)% 4 (dz/9y)? is not Gaus-
sian in general, but in most applications the slope is small and
the mean value of slope m can be taken to calculate the mean
value of /1 + (3z/8x)? + (3z/dy)2. It can also be assumed
that slopes in the x- and y-directions are the same. Using equa-
tion (21) and m, and integrating, the roughness factor can be
calculated (Nosonovsky and Bhushan 2005) as

R 2/ V1+ (92/0x)* + (32/9y)? dx dy

Ay
21— _ *)2
. szzz\/lﬁ%w_ 45)
For small //B*
o \2 2
R~ [1+2(— . 46
f \/ (&) a5 0
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Figure 5. The contact angle for a rough surface (0) as a function of
the roughness factor (Ry) for various contact angles for smooth
surfaces (6p) (Nosonovsky and Bhushan 2005).
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Furthermore, for small values of o%/(I8*)
o

(7)(7)

l

In order to estimate the critical value of the roughness
parameters, we assume, as in the previous subsection, that
the average absolute value of the surface slope is responsible
for transition to the composite solid—liquid—air interface. The
absolute value of the slope is given by equation (43), so, in a
similar manner as in derivation of equation (42), the critical
values of the Gaussian surface roughness parameters is

-1

The dependence of the roughness factor on o/B* is
presented in figure 6(b) based on equation (45). Using the
roughness factor, the dependence of the contact angle on o/8*
is presented in figure 4(b). It is observed, that both the
roughness factor and the contact angle increase with increasing
o/B*. Based on equation (48), it may be shown that, for the
selected value of 6y = 120°, the contact angle may approach
180° prior to the critical values of the roughness parameters
being reached for the values of o/f* and [/B8* shown. It is
noted that, for most natural and engineering Gaussian surfaces,
the ratio o/B* <« 0.1 and the average value of slope is
small (m <« 1). Therefore, although the roughness is below
the critical value it is difficult to achieve high contact angles
with Gaussian random surfaces with a realistic value of o/8*
(Nosonovsky and Bhushan 2005). The dependence based on
the Wenzel equation is shown for comparison in figure 5.

(47)

I —[exp(=p*/DT?

T

o

l

) = tan(—6p). (48)
0

4.3. Surface optimization for maximum contact angle

Among the several types of surfaces considered in the
preceding subsections, the highest contact angles are achieved
with the sawtooth profile and rectangular/hemispherically
topped/conical/pyramidal asperities. As stated earlier, the
sawtooth profile is undesirable due to its sharp edges, which
may pin the triple line, and because the grooves may reinforce
wetting. Therefore, the rectangular, hemispherically topped,
conical, and pyramidal asperities should be considered as the

11

60§\

Figure 6. Hexagonal (honeycomb) pattern of packing of circular
asperities for the highest packing density (Nosonovsky and Bhushan
2005).

most appropriate for producing the highest contact angles. In
order to prevent contact angle hysteresis, it is desirable to avoid
asperities with sharp edges, which may cause pinning of the
triple line. Therefore, hemispherically topped asperities are the
most appropriate. A case also will be made later for pyramidal
asperities.

Two-tiered roughness, involving two wavelengths, has
been considered by some authors (e.g. Herminghaus 2000)
to decrease wetting. However, it is more likely to involve
sharp edges, which are undesirable, and lead to an unstable
composite solid—liquid—air interface.

Based on equations (24), (27), and (40), and on the results
shown in figure 4, the maximum contact angle can be achieved
by increasing the aspect ratio 4 /r and the packing parameter
p. The maximum aspect ratio may be achieved by increasing
asperity height. The maximum packing parameter may be
achieved by packing the asperities as tight as possible. The
square of the packing parameter p? is equal to the ratio of
the foundation area of the asperities to the total surface area;
therefore, higher values of p correspond to a higher packing
density. For asperities with a circular foundation, the square
pattern of asperity distribution results in packing of 1/(2r)
rows per unit area with 1/(2r) asperities per unit length in the
row. A higher density of asperity packing can be achieved by
a hexagonal (honeycomb) distribution of asperities (figure 6).
This distribution pattern results in packing of 1/(+/3r) rows of
asperities per unit length with 1/(2r) asperities per unit length
in the row, orn = 1/ (2«/5}’2), which yields

T
=ran= | —= ~0.952.

Therefore, the recommendation for surface optimization is
to take hexagonally packed hemispherically topped asperities
with a high aspect ratio (needle-like). It is noted that certain
leaves tend to have a distribution of the papillae close to the
hexagonal (honeycomb) (Nosonovsky and Bhushan 2005).

An alternative shape, which provides a packing density
p 1, is given by pyramidal asperities with a square
foundation. In order to avoid pinning due to sharp edges, the
tops may be rounded with hemispheres. Rectangular asperities
do not provide space for liquid to penetrate, therefore in the
case of asperities with a square foundation, a pyramidal shape

(49)
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should be used. It should be noted that valleys with rounded
edges have the same effect on contact angle as asperities do
(Nosonovsky and Bhushan 2005).

The foundation radius of individual asperities, r (for
circular foundations) or the foundation side length 2r (for
square foundations) should be small compared to typical
droplets. The upper limit of droplet size may be estimated
based on the requirement that the gravity effect is small
compared to the surface tension (a bigger droplet is likely
to be divided into several small droplets). The gravitational
energy of the droplet is given by its density p multiplied by the
volume, gravitational constant g = 9.81 m s~2, and radius

W, = ;—‘yrr3pgr (50)
whereas the energy due to the surface tension can be estimated
by the droplet surface area multiplied by the surface tension

W, = 4ryia. (51
Based on W, < W;, we find that the maximum droplet radius
is smaller than the capillary length

3
P & | LA
0g

(52)

Typical quantities for water, p 1000 kgm~ and Yo =
72 mJ m~? result in rp, < 4.7 mm. Although the small
droplets will tend to unite into bigger ones, the minimum
droplet radius is limited only by molecular scale, so it is
desirable to have r as small as possible.

To summarize, the highest possible contact angle and
lowest contact angle hysteresis, which is desirable in
applications, may be achieved by using hemispherically
topped asperities with hexagonal packing pattern or pyramidal
asperities with a rounded top. These recommendations can
be used for producing superhydrophobic surfaces (Nosonovsky
and Bhushan 2005).

For wetting liquids, roughness results in a decreased
contact angle, in accordance with equation (6). Therefore,
in order to create a superhydrophobic surface using the effect
of roughness, a hydrophobic film is required. Hydrophobic
coating is a well-known method of increasing the water-
repellency of a material (Satas 1991).

5. Contact angle hysteresis

A sharp edge can pin the line of contact of the solid, liquid,
and air (also known as the ‘triple line’) at a position far from
stable equilibrium, i.e. at contact angles different from 6,
(Eustathopoulos ef al 1999). This effect is illustrated in the
bottom sketch of figure 7, which shows a droplet propagating
along a solid surface with grooves. At the edge point, the
contact angle is not defined and can have any value between
the values corresponding to the contact with the horizontal and
inclined surfaces. For a droplet moving from left to right, the
triple line will be pinned at the edge point until it is able to
proceed to the inclined plane. As is observed from figure 7,
the change of the surface slope («) at the edge is the reason for
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Figure 7. Droplet of liquid in contact with a solid surface—smooth
surface, contact angle 6; rough surface, contact angle 6—and a
surface with sharp edges. For a droplet moving from left to right on a
sharp edge (shown by the arrow), the contact angle at a sharp edge
may be any value between the contact angle with the horizontal plane
and with the inclined plane. This effect results in a difference
between advancing (0,4y = 6y + ) and receding (Oec = Gy — &)
contact angles (Nosonovsky and Bhushan 2005).

the pinning. Because of the pinning, the value of the contact
angle at the front of the droplet (dynamic maximum advancing
contact angle or 6,9, = 6y + @) is greater than 6, whereas the
value of the contact angle at the back of the droplet (dynamic
minimum receding contact angle or 6. = 6y — «) is smaller
than 6. This phenomenon is known as contact angle hysteresis
(Johnson and Dettre 1964, Israelachvili 1992, Eustathopoulos
et al 1999). A hysteresis domain of the dynamic contact angle
is thus defined by the difference 6,3y — Orec. The liquid can
travel easily along the surface if the contact angle hysteresis is
small. It is noted that the static contact angle lies within the
hysteresis domain, therefore increasing the static contact angle
up to the values of a superhydrophobic surface (approaching
180°) will also result in a reduction of contact angle hysteresis.
In a similar manner, contact angle hysteresis also can exist even
if the surface slope changes smoothly, without sharp edges.

For a micropatterned surface built of flat-top columns
(R 1), contact angle hysteresis involves a term inherent
to the nominally smooth surface and a term dependent upon
the surface roughness, H;. Using the same approach as in
the derivation of equation (12) for the advancing and receding
contact angles, one finds

€08 Oy — €COS bree = fsL(COS Bagvo — COS breco) + Hy  (53)

where On4v0 and 6O are the advancing and receding
contact angles for the smooth surface (Bhushan er al 2007,
Nosonovsky 2007b). The first term in the right-hand part of the
equation (53), which corresponds to the inherent contact angle
hysteresis of a smooth surface, is proportional to the fraction of
the solid-liquid contact area, fsp. The second term, H;, may
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be assumed to be proportional to the length density of the pillar
edges, or, in other words, to the length density of the triple line
(Bhushan er al 2007). Thus equation (53) involves both the
term proportional to the solid—liquid interface area and to the
triple line length.

6. Stability of the composite interface

As was pointed out in the preceding sections, although a
homogeneous interface may be possible geometrically, it may
be unstable, so that the stability of a homogeneous interface
should be analyzed. Mathematically, this means that in
addition to satisfying the equilibrium condition for the net
energy

dE =0 (54)

the stable configuration should satisfy the minimum net energy
condition

d’E > 0. (55)

The interface may be destabilized due to small perturbations
caused by various external influences and effects, for example
by the capillary or gravitational waves. Furthermore, the
configuration may have many stable equilibrium conditions
(metastability) and may be transformed from one stable
position to another due to the external effects, with a certain
probability of finding the system at a given state. These
phenomena are considered in the present section.

6.1. Destabilization due to capillary and gravitational waves

A wave may form at the liquid—air interface due to gravitational
or capillary forces

z = Acos(kx — wt) (56)

where z is vertical displacement, k and w are the wavenumber
and frequency, which are related to each other as
o? = gk + 2283 (57)

P
where g is the gravity constant, p is the liquid density and ypa
is the liquid—air interface energy (Landau and Lifshitz 1959).

For most micro-/nanoscale applications, the effect of gravity is
small and the frequency is given by

YLak3
P

The capillary waves may lead to composite interface
destabilization, as will be shown below (Nosonovsky and
Bhushan 2006a).

It is assumed that the interface energy ypa is a constant
for given materials and that it is size independent. Generally
speaking, this is not true for a very small thickness of liquid
comparable with the range of intermolecular forces. However,
in the present work we are assuming that the relevant size of
the surface roughness, as well as the thickness of the liquid
layer, is greater than the range of the intermolecular forces and
therefore that 1 A is constant.

(58)
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Consider a sawtooth profile, figure 8(a), with tooth height
a tan /2 and distance between the teeth d. The teeth represent
the asperities of a rough surface. It is assumed that the
model of the sawtooth profile can capture important features
of more complicated rough surfaces. The horizontal liquid—
air interface is located at a distance z from the valley and
has small waves of amplitude A and wavenumber k. The
total change of the energy of the system from the energy
of the homogeneous solid-liquid interface is given by the
sum of surface changes throughout the inclined and horizontal
portions of the surface and corresponding liquid—air parts, plus
the wave energy. The changes in surface energy at inclined
and horizontal portions of the surfaces and at corresponding
liquid—air parts are given by the lengths of the corresponding
surfaces times the corresponding interface energies. The length
of the inclined portion of the interface is z/sina and the
length of the corresponding section of the wavy surface is
(z/tana)(kLy/2m), where L is the length of the liquid—air
interface per wave period, given by the integral

2m/k
Lo = / \/ 1 + (Ak)? sin®(xk) dx
0

)

V1 + (Ak)?
where E(x) is an elliptical integral of the second kind
(Nosonovsky and Bhushan 2006a). The length of the
horizontal portion of the interface is d, and the length of the
corresponding section of the wavy surface is dkLo/(27). The
energy change is given by

=41+ (Ak)2E< (59)

2z kLg

tana 27 na

kL
—d|(ysL — ¥sa) — MA—— H(z) + Ey

2z
U(z) = ————(ysL — ¥sa) +
sina

(s cone2
cos 0y + cosaz—

)

T

_ 2ZYLA
sin o

+ dyia |:cos 6o + kz—ioi|H(z) + Ey (60)
where E, is the energy of the waves, ysp and ysp are
interface energies for the solid—liquid and solid—air interfaces,
correspondingly, and H(z) is the step function, such that
H(z) =0forz < 0and H(z) = 1 for z > 0. It is assumed in
equation (60) that z > A and the Young equation is used.

In the limiting case of a flat liquid—air interface (A
0), the surface energy is given by Nosonovsky and Bhushan
(2006a)

2z 2z
U@) =———(ysL — ¥sa) + ——¥1La
sin o tan o

—d[(ysL — ¥sa) — YLalH (2)
_ 2ZY1A

sin o
+ dypa(costy + 1)H (z) (61)

For z > 0, the energy may increase or decrease with increasing
z, depending on the sign of (cos 6y +cos ), since both y1. o and
sina are positive. In particular, if 180° — « > 6, the energy
increases with z, otherwise it decreases. The stable position
corresponds to the minimum value of the energy, which is

(cos By + cosa)

A<z
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(a) Composite solid-liquid-air interface (d) Formation of composite solid-
liquid-air interface

Smooth liquid-air interface Sawtooth profile

o z
Liquid

Liquid

(b) Wavy liquid-air interface

(e) Destabilization of composite interface
due to dynamic effects
(©) Stochastic distribution of air pockets Sawtooth profile

S S Liquid ',

Smooth profile

. Liquid

Figure 8. Sawtooth profile: (a) with smooth liquid—air interface, (b) with wavy liquid—air interface, and (c) with stochastic distribution of air
pockets (Nosonovsky and Bhushan 2006a). (d) Formation of a composite solid—liquid—air interface for sawtooth and smooth profiles and

(e) destabilization of the composite interface for the sawtooth and smooth profiles due to dynamic effects. The dynamic contact angle 64 > 6,
corresponds to an advancing liquid—air interface, whereas 63 < 6, corresponds to a receding interface (Nosonovsky and Bhushan 2005).

z = a/(2tan ) (liquid staying at the tops of the asperities) given by Nosonovsky and Bhushan (2006a)
for 180° — o < 6 and z = 0 for 180° — & > y (homogeneous </ A)/k
. L. ar cos(z
solid-liquid interface). Lia= / 1 + (Ak)? sin(xk) dx. (63)
For a wavy liquid air interface, based on equation (60), —arcos(z/A)/k

the energy may increase with increasing z, if cos6o + The energy change U as a function of the position of the

cosakLo/(2w) > O, for z > A. However, for z < A, the  |jquid-air interface z is presented in figure 9 for the smooth
waves touch the horizontal part of the interface and only the interface (equation (61)) and for the wavy liquid—air interface
fraction (7w — arccos(z/A))/m of the interface is liquid—air. In  (equations (60) and (62)). It is noted that in the case when the

this case the energy change is given by waves are introduced U(z) has a local minimum at z = 0,
which corresponds to a homogeneous solid-liquid interface,
ZVLA 7 — arccos(z/A) [kLya and, in the case of cos6y + cosakLy/(2mw) < 0, it has
U@ = sina cos b + 27 cosa another minimum at z = a/(2tan«), which corresponds to
KLia\ 7 — arccos(z/A) the composite S(')l'ld—llqllld—'alr interface '(l'lqu1d §tay1ng at' the
+ dyial cos 6y + H)+ Ey top of the asperities). The interface position z is normalized
21 . e .
in such a manner that the first equilibrium position (z =
A>z (62) 0) corresponds to zero and the second z = a/(2tancw)

corresponds to unity in figure 9. In this case, the system
where Ly 4 is the length of the liquid—air part of the interface  has two equilibria and may be, with a certain probability,
(the wave not touching the solid horizontal part of the interface) in either one or another position. The interface consists
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-——N
Smooth interface

Wavy interface

< (2Atana)/a

0.5
(2ztana)/a

Figure 9. Energy change as a function of interface position for
smooth and wavy liquid—air interfaces, dy;(cos6y + 1) = 0.9,
yLa(cos6y + cosa)/sina = —0.2,

ya(cos6y + (kLo/2m) cosa)/ sina = —0.15, Ey = 0.015, A = 0.1
(Nosonovsky and Bhushan 2006a).

of many asperities and valleys—some of the valleys have
a homogeneous interface whereas others have a composite
interface (figure 8(b)). It is assumed that the probability p
for the interface to be composite depends on the geometrical
parameters of the interface and the values of the energy which
correspond to the metastable states (Nosonovsky and Bhushan
2006a).

6.2. Stochastic model

In this section, the mechanism of destabilization of the
composite interface due to liquid—air interface waves will be
considered, and a statistical model for interface destabilization
will be discussed (Nosonovsky and Bhushan 2006a). It has
been shown in the previous section that the interface may
have two stable states. The first stable state corresponds to a
homogeneous interface with energy level

U©) =0. (64)
The second metastable state corresponds to a composite
interface (z a/2tan«) with energy level obtained from

equation (60)
kL
U(a/2tana) = & <cos O + cosa—0>
tan o sin o 2
kL
+ dyial cos 6y + - + E). (65)

A certain probability p may be associated with each of
the two stable states of energy. Assuming that the waves
with energy E, have a similar effect on the system, as the
thermal fluctuation of an ideal gas with the energy k7, the
Maxwell-Boltzmann statistical distribution may be applied
(Eyring 1964). Based on the Maxwell-Boltzmann distribution,
the probability is exponentially dependent upon the energy

level:
U
E

-0 (66)
0

p=20b exp(
where B is a normalization constant (Nosonovsky and Bhushan
2006a).  Substituting equation (65) into (66) yields the
probability of the composite interface

p(9) = Cexp(—9¢/¢o) (67)
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where
¢=d/a (68)
Ey
do = (69)
ayLA(cos 6y + %)
kL
C = Bexp[—#(cos@o —i—cosa—O) — 1i|.
Eptan o sina 2

(70)

6.3. Analysis of rough profiles

In this section, a patterned rough surface will be analyzed.
Consider a periodic sawtooth profile with a distance between
asperities d and width a, as shown in figure 8. Let us assume
that the probability of the interface remaining composite,
p, decreases exponentially with distance between asperities
according to equation (67) (Nosonovsky and Bhushan 2006a).
The roughness factor for the homogeneous interface, on the
basis of equation (7), is given by

_d+a/cosa ¢+ 1/cosa

Ry
d+a b+ 1

(71)

The total fraction of valleys which are covered with liquid
(homogeneous interface) is given by 1— p, whereas the fraction
of the valleys which have air pockets (composite interface) is
given by p, obtained from equation (67). Based on this, the
fractional areas are given by

(1 — p)(d+a/cosa)
(1 —=p)d+a/cosa) + p(d+a)
(1 —=p)(¢+1/cos)

fsL =

_ (72)
(1= p)(¢+ 1/cosa) + p(¢ + 1)
e p(d +a)
T (= p)d +a/cosa) + p(d +a)
p(@p+1) 73)

T (A=p)p+1/cosa)+plp+ 1)

Substituting equations (71)—(73) into equation (12) yields the
expression for the contact angle

_ (1=p)@+1/cosa)*cosby — p(¢ + 1)*
S (1= p)+1/cosa)(p+ 1)+ p(p+ 12

The results for the contact angle as a function of ¢ are
presented in figure 10(a). It is observed that higher roughness
(lower ¢) corresponds to higher contact angles (Nosonovsky
and Bhushan 2006a).

Comparison of the models, based on equations (6)
(homogeneous interface), (12) (solid—liquid—air composite
interface), and (74) (stochastic interface) is presented in
figure 10(b). It is observed that for high roughness (small
¢), Recos6y > 1 and all three models predict 6
180°. However, for a higher distance between the asperities
(higher ¢), the composite interface model, which does not
account for the possibility of destabilization, still predicts
6 = 180°, if 6p + ¢ > 180°, whereas the homogeneous
interface model predicts a rapid decrease of & down to the
value of 6y, due to a decreasing roughness factor. The
stochastic model yields the values of the contact angle close

0s 6 (74)
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Figure 10. (a) Contact angle as a function of distance between
asperities for the stochastic model. (b) Comparison of the interface
with no air pockets, composite liquid—air interface and stochastic
distribution of air pockets (Nosonovsky and Bhushan 2006a).

to the composite interface model for short distances between
the asperities (small ¢); however, with increasing ¢, the
probability of destabilization of the composite interface grows,
and eventually the values of the contact angle approach those
predicted by the homogeneous interface model.

6.4. Effect of gravity

In the preceding analysis we ignored the effect of gravity by
assuming that the gravity force is small compared to the surface
tension forces. However, for big droplets this assumption may
not be correct. If the weight of a droplet exceeds the vertical
component of the total surface tension force at the triple line,
a droplet, suspended at the tops of the asperities, will collapse
(Extrand 2002). Thus a maximum critical size of the droplet
Rnax exists, above which the droplet cannot remain suspended
on the tops of the asperities. Let us investigate how this
maximum size depends on the period of asperities /. Consider
arough surface with roughness period / and amplitude Z, which
corresponds to maximum droplet size Rpax. The weight of the
droplet is proportional to its volume and to the third power of
Rmax:

W & Runax. (75)

For the maximum value of droplet radius, the weight is
equal to the total vertical component of the surface tension,
proportional to the surface tension times the cosine of the
contact angle times the total perimeter of the triple lines:

W o ysptN cosf (76)
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where N is the number of asperities under the droplet
(Nosonovsky and Bhushan 2006b).

Consider another rough surface with period «f and
amplitude «Z, which has the same roughness factor and the
same contact angle. The length of the triple line for each
asperity will be oz. The number of asperities under the droplet
is proportional to the second power of Ry, divided by the
second power of o

N o R2, /o’ (77)
Combining equations (75)—(77) yields
Rmax X 1/0( (78)

This result suggests that with increasing asperity size the
ability of a rough surface to form the composite interface
decreases and larger droplets collapse. Therefore, smaller
asperities make a composite interface more likely, due to
gravity. Increasing the droplet size has the same effect as
increasing the period of roughness (Nosonovsky and Bhushan
2006b).

7. Hierarchical roughness and stability of the
composite interface

Although there is a significant literature about the lotus
effect, and numerous attempts to produce artificial biomimetic
roughness-induced hydrophobic surfaces have been made
(Yost et al 1995, Shibuichi et al 1996, Onda et al 1996, Feng
et al 2002, Erbil et al 2003, Patankar 2004a, 2004b, Cheng
et al 2005, Sun et al 2005, Wang et al 2006), many details
of the mechanism of roughness-induced non-wetting are still
not well understood. In particular, it is not clear why the lotus
leaf and other natural hydrophobic surfaces have a multiscale
(or hierarchical) roughness structure, that is, nanoscale bumps
superimposed over microscale asperities. Gao and McCarthy
(2006) recently suggested that multiscale roughness affects the
kinetics of droplet motion and the Laplace pressure at which
water intrudes between the bumps. In the present study we
investigate the effect of the multiscale roughness upon stability
of the roughness-induced hydrophobic interface.

Wetting of a solid by a liquid is characterized by the
contact angle, which is the angle between the solid—air and
the liquid—air interfaces. The greater the contact angle, the
more hydrophobic the material. The value of the contact
angle is usually greater when the liquid is added (so-called
advancing contact angle) than when it is removed (receding
contact angle). The difference between the advancing and
receding contact angle constitutes the contact angle hysteresis.
The contact angle hysteresis is related to energy barriers, which
a liquid droplet should overcome during its flow along a solid
surface, and thus characterizes resistance to the flow. The lower
the adhesion of a liquid droplet to the solid; the smaller the
energy barriers, the lower the value of contact angle hysteresis,
and the easier it is for the droplet to flow along the surface.

Several mechanisms are responsible for superhydropho-
bicity of natural surfaces such as lotus leaves. First, these sur-
faces are coated with wax, which is hydrophobic itself (with
values of contact angle of about 103°, Kamusewitz er al 1999),
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Second, they have a complicated geometrical structure with
bumps or asperities (in the case of plant leaves called papillae)
on the microscale (for the leaf of lotus the typical papilla size
is of the order of 10 uum) covered with much smaller nanoscale
bumps or nanometer-scale structures (Quéré 2005, Cheng et al
2005). In a similar manner, the legs of water striders are cov-
ered with a large number of oriented tiny hair (microsetae) with
fine nanogrooves (Gao and Jiang 2004). Neinhuis and Barthlott
(1997) suggested that hierarchical surfaces are less vulnera-
ble against mechanical damage of nanostructures and therefore
maintain functionality even after damage. Wagner et al (2003)
showed that hierarchically structured surfaces are more readily
able to repel water even if the surfaces tension is drastically
reduced as compared to surfaces with only one length scale of
roughening. This might be of importance in wetlands or other
aquatic habitats where water is often polluted due to decay-
ing plant material and other contaminations reducing surface
tension (Wagner et al 2003). Herminghaus (2000) pointed out
that certain self-affine profiles with multiscale roughness may
result in superhydrophobic surfaces even for hydrophilic ma-
terials. However, theoretical explanation for the predominance
of hierarchically structured surfaces in nature remains an im-
portant task.

It is believed that in order to be superhydrophobic, a
rough surface should be able to maintain a composite interface
with air pockets or bubbles trapped in the valleys between the
asperities (Johnson and Dettre 1964, Marmur 2003, Patankar
2003, Lafuma and Quérée 2003), as opposed to a homogeneous
solid—liquid interface. In many cases both a composite
interface and the homogeneous interface may exist for the
same surface; however, only a composite interface provides
the required superhydrophobic properties. Furthermore, a
composite interface is much less stable than a homogeneous
interface, and it may be destroyed by liquid filling the valleys
between asperities to form a homogeneous interface, whereas
the opposite transition has never been observed (Quéré 2005).
The mechanisms of this transition have been the subject of
intensive investigation in recent years (Marmur 2003, Lafuma
and Queére 2003, Cheng et al 2005, Nosonovsky and Bhushan
2006a, Nosonovsky 2007a). Among factors suggested to affect
the transition are the effects of the weight and curvature of the
droplet. For small droplets, surface effects dominate over the
gravity and the latter is hardly responsible for the transition,
while curvature of the droplet may be responsible. The
above suggests that stability of a composite interface is a key
issue for the design of roughness-induced superhydrophobic
surfaces. In this paper we formulate a geometrical stability
criterion, and then investigate typical two-dimensional and
three-dimensional surfaces with roughness at several scale
levels. We show that a multiscale (hierarchical) roughness may
enhance the stability of a composite interface.

7.1. Stability of a composite interface and hierarchical
roughness

Spreading of liquid through porous media with a periodic
geometry has been studied by several authors (Sharma and
Ross 1991, Tsori 2006); however, stability of the composite
interface has not been studied in detail in the literature. In

17

this section, a geometrical stability condition for a composite
interface will be formulated based on free energy minimization
using the Lagrange method to find a minimum of a function of
several variables with constraints. First, we will formulate the
extremum criterion and show that it leads to the well-known
Young equation, and then a stability criterion will be derived
mathematically and its physical meaning will be discussed.
The liquid—air interface is at equilibrium if the free energy
of the solid-liquid—air system reaches its minimum. In order
to find local conditional minima of the free surface energy
W = AsLysL + Asaysa + ALayLa with the constant volume
constraint V = V), the Lagrange function is constructed

L(Asy, Asa, Ara, V, A) = AsLyst + Asaysa

+ Apayia + p(V — Vo) (79)

where Agp, Asa, Apa are areas of the solid-liquid, solid—air
and liquid—air interfaces and ysi, Ysa, ¥La are corresponding
free energies, V) is the volume and p is the Lagrange multiplier
(Greenberg 1978), having the dimension of pressure. The
corresponding change of L is given by

SL = 8ASLJ/SL + SASAJ/SA + 8ALA)/LA + A8V + 8P(V — V())

(80)
Note, that the arguments of L are interdependent with § Ag;, =
—3Aga Whereas § A a consists of two terms, §Apa = SApar +
8Arav. The first term, Apar, is due to a change in position
of the triple line (line of contact between solid, liquid, and air)
and the second, 6 A av, is due to a change in the shape of the
liquid—air interface. Furthermore, § Apar = §Agp cos 6 from
geometrical considerations (Nosonovsky 2007a).

Suppose the shape of the liquid—air interface is given
parametrically by vector 7(u, v), where u and v are parameters
which uniquely characterize any point at a surface, and the
shape changes slightly

Fu, v) = Fu, v) + oF (u, v). (81)
The change due to the shape of the liquid—air interface is
given by the area of an element of the liquid—air interface
A(u, v) du dv times the normal displacement multiplied by the
sum of principal radii of curvature fié_r)(l /R 4+ 1/R,), where
n is the normal vector and Ry, R, are the principal radii of
curvature

SALav = // an_r)(l/Rl 4+ 1/Ry)A dudv (82)
ALA
where (Greenberg 1978)
Al o) — ar\*(or\* [ar ar\*"? 3)
=1\ ) oo ou 9v '
The change in volume is given by
sV = // 7o A du dv. (84)

ALa
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Combining equations (82)—(84) and setting § L(6 AsL, é7,8V)

= 0 yields
j| VLA

+ // a(1/Ri + 1/Ry) + pliior Adudv + A8V (85)

ALa

SL = 5ASL|:COSQ() — M

YLA

which results in three equations that should be satisfied

simultaneously. The first is the Young equation for the contact

angle 6y, which should be satisfied at the points of the triple

line:

__ VSA — ¥sL
VA

cos 6 (86)

The second equation for the Lagrange multipliers p =
—ya(1/R; + 1/R;,) is satisfied only if the curvature 1/R; +
1/R; is a constant independent of u and v throughout the
entire liquid—air interface (Nosonovsky 2007a). Physically, of
course, this condition reflects Laplace pressure drop through
a curved interface. The third equation is just the condition of
constant volume V = V; (Nosonovsky 2007a).

In order for the extremum to be a local minimum (rather
than a maximum) of W, the equilibrium should also satisfy the
stability condition d>W > 0. Differentiating W = Agp ys. +
Asaysa + ALayia and using §Ap 4 = §Agy cos 6 twice yields

W = dzASL[cos 6 — M}
A

ysL +dApa d(cosO) > 0.

&7)
We ignored the effect of the changing shape of the liquid—air
interface (the term corresponding to § Apay), since it is known
that 1/R; 4+ 1/R, = const provides the minimum (rather than
the maximum) liquid—air interface area condition and only the
effect of moving the triple line is of interest for us. Using
equation (86), which is satisfied at the equilibrium, and the fact
that cos 6 decreases monotonically with 6 at the domain of our
interest, 0° < 6 < 180°, yields (Nosonovsky 2007a)

dAgp df < 0. (88)

In other words, in order for the interface to be stable,
for advancing liquid (increasing Ag; ) the value of the contact
angle should decrease, whereas for receding liquid the contact
angle should increase. Note also that for a liquid—air interface
coming to the solid surface under the angle 6, an advance of
the interface results in the change of energy

dW = dAsL(ysL — vsa) +dArLayia
= dAgL(ysL — ¥sa) + dAsLyLa cosO

= dASLVLA(_M + COSG)
VLA

= dAsLyLa(cos @ — cos ). (89)

Thus, if 6 > 6, the energy decreases and it is energetically
profitable for the liquid to advance, whereas if 6 < 6y, the
liquid would retreat. So, the physical meaning of equation (88)
is that for a small advance/retreat of the liquid it should be more
energetically profitable to return to the original position rather
than continue to advance/retreat (Nosonovsky 2007a).
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For a two-dimensional surface, since a change of angle df
is equal to the change of slope of the surface, it depends on
the sign of curvature of the surface whether the configuration
is stable or not. The convex (bumpy) surface leads to a
stable interface, whereas a concaved (groovy) surface leads
to an unstable interface. The liquid keeps spreading until
both equations (86) and (88) are satisfied at the triple line and
1/Ry + 1/R, = const at the liquid—air interface, provided the
volume of the liquid is conserved.

In the next section, we will apply the stability
criterion (equation (88)) to typical two-dimensional and three-
dimensional surfaces with multiscale roughness.

7.2. Hierarchical roughness

In this section, we will consider several surfaces with nanoscale
roughness superimposed over larger microscale pillars and will
investigate the effect of concaved and convex nanoroughness
upon the stability of a composite interface. We will study
the case of an infinitely large reservoir of liquid on top of the
pillars. In most applications, liquid droplets of finite size are
in contact with a rough surface; however, the size of roughness
details is small compared to the size of the droplets and for
practical purposes droplet size can be considered infinite.

7.2.1. Two-dimensional roughness.  Consider a two-
dimensional structure with rectangular pillars of height A
and width a separated by a distance b, covered with small
semi-circular ridges and grooves of radius r (figure 11(a)).
Since the distance between the pillars is small in comparison
with the capillary length, and therefore the effect of gravity
is negligible, we can assume that the liquid—air interface is
a horizontal plane, and its position is characterized by the
vertical coordinate z. The free energy is given by Nosonovsky
(2007a)

W = AspLysL + Asaysa + ALayia

=rLy a(sina — o cos ), (90)

where o« = a cos((r —z)/r)+2n N is the angle corresponding
to vertical position of the interface z, N is the number of a ridge
or groove, and L is length of the grooves in the y-direction,
which is required based on the dimensional considerations.
The dependence is presented in figure 11(b) for the cases of
hydrophobic (6y = 150°) and hydrophilic (6 = 30°) materials
for both the bumpy and the grooved surface. It is seen that for
the bumpy surface there are many states of stable equilibrium
(shown in figure 11(a) with dotted lines), separated by energy
barriers, which correspond to every ridge, whereas for the
grooved surface equilibrium states are unstable. Therefore,
the ridges can pin the triple line and thus lead to a composite
interface. In the case of a hydrophilic surface, each lower
position of the equilibrium state corresponds to a lower value
of W, therefore when the liquid advances from one equilibrium
state to the next, the total energy decreases and thus liquid’s
advance is energetically profitable. When the liquid reaches
the bottom of the valley and completely fills the space between
the pillars forming a homogeneous interface, the total energy
decreases dramatically by the value of

O<z<h

AW = bL(ysa + yLa — vs) = bLyLa(1 +cosbp). (91)
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Figure 11. Two-dimensional pillars with semi-circular
bumps/grooves. (a) Schematics of the structure. The bumps may pin
the triple line, because an advance of the liquid—air (LA) interface
results in decrease of the contact angle (6 < 6y), making equilibrium
stable. Grooves provide equilibrium positions which satisfy the
Young equation; however, the equilibrium is unstable because an
advance of the LA interface results in increase of the contact angle
(6 > 6,). (b) Energy profiles for configurations in figure 2(a) with
bumps and grooves for hydrophilic (6y = 30°) and hydrophobic

(6p = 150°) materials. Energy (normalized by Lry ) is shown as a
function of vertical position of the interface z (normalized by the
radius of bumps/grooves ). Bumps result in stable equilibria (energy
minima), whereas grooves result in unstable equilibria (energy
maxima) (Nosonovsky 2007a).

The opposite transition from a homogeneous interface to a
composite interface requires a high activation energy AW
and is thus unlikely, making the transition from a composite
interface to a homogeneous interface irreversible. Since
the distance between the pillars b is much greater than r,
the energy barriers which separate the equilibrium states
2mr Lypa cos 6y are relatively small compared with AW, and
a low activation energy is required for the liquid to spread and
propagate from one equilibrium state to the other (Nosonovsky
and Bhushan 2007a, 2007b).

Since the change of angle df for a two-dimensional
surface is equal to the change of surface slope, based on
equation (88), whether the configuration is stable or not
depends upon the sign of curvature of the surface. A convex
(bumpy) surface leads to a stable interface, whereas a concaved
(grooved) surface leads to an unstable interface. The liquid
keeps spreading until both equations (8) and (10) are satisfied
at the triple line and 1/R; + 1/R, = const at the liquid—
air interface, provided the volume of the liquid is conserved,
which is the case for a slow thermodynamic process.

7.2.2.  Three-dimensional pillars with ridges and grooves.
Consider now a three-dimensional structure with circular
pillars of height & and radius R separated by distance b and
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Figure 12. Schematics of the spatial distribution of
three-dimensional pillars with semi-circular bumps/grooves upon a
surface (Nosonovsky 2007a).

distributed hexagonally with a density of = 2/[+/3(2R+b)?]
pillars per unit area, covered with small ridges and grooves
of radius r (figure 11(a)). Similarly to the preceding section,
the free energy per area S is given by the circumference of a
pillar 277 R times the number of pillars S times 7y (sina —
o cos 6y)

W =27 RnSryia(sina — a cos ), 0<z<h (92

The similarity between equations (90) and (92) is noted,
both energy profiles are different only in their normalization
constant, so the dependence of the free energy upon the
position of the interface is presented in figure 11(b) for the case
of two-dimensional pillars has qualitatively the same profile as
for the case of three-dimensional pillars. In a similar manner
to the case of two-dimensional pillars, the ridges can pin the
triple line (Nosonovsky 2007a).

7.2.3. Three-dimensional surface. In the previous sections
we considered two-dimensional nanoscale ridges and grooves
superimposed over two- and three-dimensional pillars. Real
superhydrophobic surfaces, such as plant leaves, are three-
dimensional with three-dimensional nanobumps. For three-
dimensional surfaces, the shape of the liquid—air interface
may be quite complex and thus the stability of the composite
interface is difficult to analyze. In order to consider a three-
dimensional configuration which allows for a plane horizontal
liquid—air interface we will investigate a surface composed
of circular pillars of height & and radius R separated by
distance b with the density of n = 2/[v/3(2R + b)?] pillars
per unit area (following the hexagonal distribution pattern
shown in figure 12), which are formed of layers of small
spheres of radius r, packed according to the hexagonal pattern
(figure 13(a)). The packing density of the spheres is equal to
1/(2+/3r?) spheres per unit area in every horizontal layer. The
liquid—air interface area is now given by the total flat area of
the surface, Ap, minus the cross-sectional area of spheres under
water. The latter is given by A times the pillar density 7, times
the pillar area 7 R? times the packing density of the spheres
1/ (2\/§r2) times the cross-sectional area of individual sphere
under water, 77 (r sin )2, which yields (Nosonovsky 2007a)

n?R? sin’ o >

—_— 93
W 93)

ALa = Ao(l -
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Figure 13. Three-dimensional pillars consisting of small solid
spheres. (a) Schematics of the structure. (b) Energy (normalized by
AoyLa) as a function of vertical position of the interface z
(normalized by the radius of bumps/grooves r) for

72R?/(2+/3r%) = 1 (Nosonovsky 2007a).

The solid-liquid interface area is equal to the total surface
area of the spheres under water, which is given by the number
of spheres nAom’R?/ (24/3r?) times the surface area of the
spheres multiplied by the number of layers 47r>N plus the
area of the spheres in the layer, which is only partially under
water, 77(z2 + 2z(2r — 2)):

77A()]'L’2R2
AsL = ——F——
2/3r2

Usingsin®a = 1 —cos’a = 1—((r—2z)/r)? =2z/r—(z/r)?%,
the free energy is now given by

[4r°N + (z* 4 2z(2r — 2))]. 94

W = Apayia + AsL(yLa — ¥sa) = via(Apa + Ast cos 6p)

2R2
- AoJ/LA(l - ";’ 52/ - (/r)?

—[47N + (z/r)* +2(z/r)2 — z/r)] cos 90}). 95)

The dependence of the free energy, normalized by Agy1a, upon
the vertical position z is presented in figure 13(b) for the cases
of hydrophobic (6 105°) and hydrophilic (6 75°)
materials (Nosonovsky 2007a).
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7.3. Results and discussion

We studied three different surface profiles with large-scale
pillars and small-scale roughness superimposed over the
pillars. It is observed from figures 11(b) and 13(b) that
for both the hydrophobic and hydrophilic materials a convex
surface leads to stable equilibria, whereas a concaved surface
leads to unstable equilibria. Therefore, a convex small-
scale roughness can pin the liquid—air interface even in the
case of a hydrophilic material. This may be important for
producing reliable superhydrophobic surfaces, since the factors
destabilizing the liquid—air interface, such as nanodroplet
condensation (Cheng et al 2005, Oner and McCarthy 2000),
chemical surface heterogeneity (Checco er al 2003), and
capillary waves (Nosonovsky and Bhushan 2006a) are scale-
dependent and therefore multiscale roughness is required to
control the stability.

An experiment suggesting that the sign of curvature
is indeed important for hydrophobicity was conducted by
Sun et al (2005). They produced both a positive and a
negative replica of a lotus leaf surface by nanocasting, using
poly(dimethylsiloxane), which has a contact angle with water
of about 105°. This value is close to the contact angle of
the wax which covers lotus leaves (about 103°, Kamusewitz
et al 1999). The positive and negative replicas have the same
roughness factor and thus should produce the same contact
angle in the case of a homogeneous interface; however, the
values of the surface curvature are opposite. The value of
contact angle for the positive replica was found to be 160°
(same as for lotus leaf), while for the negative replica it was
only 110°. This result suggests that the high contact angle of
the lotus leaf is due to the composite rather than homogeneous
interface and that the sign of surface curvature indeed plays a
critical role for formation of the composite interface.

Natural and successful artificial superhydrophobic sur-
faces exhibit hierarchical multiscale roughness. Thus, the lo-
tus leaf has microscale bumps (papillae) with a typical height
and radius of 10-20 pm, which are covered with hydropho-
bic paraffin wax. Upon these bumps much smaller nanobumps
are found, with typical submicron sizes. Artificial biomimetic
superhydrophobic surfaces should also have multiscale rough-
ness.

To summarize, biomimetic superhydrophobic surfaces
should satisfy the following requirements: they should have
hydrophobic coating, high roughness factors, providing high
contact angle, and the ability to form a composite interface. To
achieve a stable composite interface, a hierarchical roughness
structure with nanoscale bumps upon microscale asperities and
valleys is required.

The mechanism of roughness-induced hydrophobicity is
complicated and involves effects at various scale ranges.
For most superhydrophobic surfaces it is important that a
composite solid—liquid—air interface is formed. A composite
interface dramatically decreases the area of contact between
liquid and solid and, therefore, decreases the adhesion of
a liquid droplet to the solid surface and contact angle
hysteresis. Formation of a composite interface is also a
multiscale phenomenon which depends upon relative sizes
of the liquid droplet and roughness details. The composite
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interface is fragile, since transition to a homogeneous interface
is irreversible. Therefore, the stability of a composite interface
is crucial for superhydrophobicity and should be addressed
for successful development of superhydrophobic surfaces. We
have demonstrated that multiscale roughness can help to resist
destabilization, with convex surfaces pinning the interface and
thus leading to stable equilibrium and preventing filling of
the gaps between the pillars even in the case of a hydrophilic
material. The effect of roughness on wetting is scale dependent
and mechanisms that lead to destabilization of a composite
interface are also scale dependent. To effectively resist
these scale-dependent mechanisms, a multiscale roughness is
required. Such multiscale roughness was found in natural and
successful artificial superhydrophobic surfaces.

8. Cassie—Wenzel transition

8.1. The Cassie—Wenzel transition and the contact angle
hysteresis

It is known from experimental observations, that the transition
from the Cassie to the Wenzel state is an irreversible event
(Lafuma and Quéré 2003, Barbieri et al 2007, Bhushan et al
2007). Whereas such a transition can be induced, for example,
by applying pressure or force to the droplet (Barbieri et al
2007), by electrical voltage (Krupenkin er al 2004, Bahadur
and Garimella 2007), by light for a photocatalytic texture (Feng
et al 2004), and by vibration (Bormashenko et al 2007), the
opposite transition has never been observed, although there
is no apparent reason for that. Several approaches have been
proposed for investigation of the Cassie—Wenzel transition.
Lafuma and Quéré (2003) suggested that the transition takes
place when the net surface energy of the Wenzel state becomes
equal to that of the Cassie state, or, in other words, when
the contact angle predicted by the Cassie equation is equal
to that predicted by the Wenzel equation. They noticed that
in certain case the transition does not occur even when it is
energetically profitable, and considered such a Cassie state
metastable. Extrand (2003) suggested that the weight of
the droplet is responsible for the transition and proposed the
contact line density model, according to which the transition
takes place when the weight exceeds the surface tension force
at the triple line. Patankar (2004a) suggested that which of
the two states is realized may depend upon how the droplet
was formed, that is upon the history of the system. Quéré
(2005) also suggested that the curvature of the droplet (which
depends upon the pressure difference between the inside and
outside of the droplet) governs the transition. Nosonovsky and
Bhushan (2006a) suggested that the transition is a dynamic
process of destabilization and identified possible destabilizing
factors. It has been also suggested that curvature of multiscale
roughness defines the stability of the Cassie state (Nosonovsky
and Bhushan 2007a, 2007b, Nosonovsky 2007a) and that
the transition is a gradual stochastic process (Nosonovsky
and Bhushan 2005, Ishino and Okumura 2006, Bormashenko
et al 2007). Numerous experimental results support many
of these approaches; however, it is not clear which particular
mechanism prevails.
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Figure 14. Wetting hysteresis for a superhydrophobic surface.
Contact angle as a function of roughness. The stable Wenzel state (i)
can transform into the stable Cassie state with increasing

roughness (ii). The metastable Cassie state (iii) can abruptly
transform (iv) into the stable Wenzel state. The transition (i)—(ii)
corresponds to equal free energies for the Wenzel and Cassie states,
whereas the transition (iv) corresponds to a significant energy
dissipation and thus it is irreversible.

There is an asymmetry between the wetting and dewetting
processes, since droplet nucleation requires less energy than
vapor bubble nucleation (cavitation). During wetting, which
involves creation of the solid-liquid interface, less energy is
released than the amount required for dewetting or destroying
the solid-liquid interface due to adhesion hysteresis. Adhesion
hysteresis is one of the factors that leads to the contact angle
hysteresis and it also results in the hysteresis of the Wenzel—
Cassie state transition. Figure 14 shows the contact angle of
a rough surface as a function of surface roughness (which is
measured for the Wenzel regime by r > 1, fi = 1 and
for the Cassie regime by f; > 1, r = 1). It is noted that
at a certain point, given by r fi + (1 — f1)/cos0y, the
lines corresponding to the Wenzel and Cassie regimes intersect.
This point corresponds to an equal net energy of the Cassie
and Wenzel states. For a lower roughness (e.g. a larger pitch
between the pillars) the Wenzel state is more energetically
profitable, whereas for a higher roughness the Cassie state is
more energetically profitable.

It is observed from figure 14 that an increase in roughness
may lead to a transition between the Wenzel and Cassie
regimes at the intersection point. With decreasing roughness,
the system is expected to transit to the Wenzel state. However,
experiments show (Bhushan er al 2007, Barbieri et al 2007)
that, despite the energy of the Wenzel state being lower than
that of the Cassie state, the transition does not necessarily
occur and the droplet may remain in the metastable Cassie
state. This is because there are energy barriers associated with
the transition, which occurs due to destabilization by dynamic
effects (such as waves and vibration).

In order to understand the contact angle hysteresis and
transition between the Cassie and Wenzel states, the shape
of the free surface energy profile can be analyzed. The
free surface energy of a droplet upon a smooth surface as a
function of the contact angle has a distinct minimum, which
corresponds to the most stable contact angle. As shown in



J. Phys.: Condens. Matter 20 (2008) 225009

M Nosonovsky and B Bhushan

()
Cassie
&
2 Wenzel
] ol
Contact angle (CA), 0
(b)
Cassie
2 Wenzel:
53]

Receding CA

VCnntact anglt;_ (CA)., 0

(C) Attractive Alttractive

Cassie  Wenzel
o
Vi o .
Vo Cassie
! |( Wensel-Cassie
! ! transition barrier M
20 B _
& [
—
) 1
Syt
p~
’ Cassie-Wensel
I Wenzel transition barrier

/

[

Position of the liquid-vapor interface, A

Figure 15. Schematics of net free energy profiles. (a) Macroscale
description; energy minima correspond to the Wenzel and Cassie
states. (b) Microscale description with multiple energy minima due
to surface texture. The largest and smallest values of the energy
minimum correspond to the advancing and receding contact angles.
(c) The origin of the two branches (Wenzel and Cassie) is found
when a dependence of energy upon /% is considered for the
microscale description (solid line) and nanoscale imperfection
(dashed line); based on Nosonovsky and Bhushan (2006a). When
nanoscale imperfection is introduced, it is observed that the Wenzel
state corresponds to an energy minimum and the energy barrier for
the Wenzel-Cassie transition is much smaller than for the opposite
transition.

figure 15(a), the macroscale profile of the net surface energy
allows us to find the contact angle (corresponding to energy
minima), but it fails to predict the contact angle hysteresis
and Cassie—Wenzel transition, which is governed by micro-
and nanoscale effects. As soon as the microscale substrate
roughness is introduced, the droplet shape can no longer be
considered as an ideal truncated sphere, and energy profiles
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have multiple energy minima corresponding to the location of
the pillars (figure 15(b)). The microscale energy profile (solid
line) has numerous energy maxima and minima due to the
surface micropattern. While exact calculation of the energy
profile for a 3D droplet is complicated, a qualitative shape
may be obtained by assuming a periodic sinusoidal dependence
(Johnson and Dettre 1964) superimposed upon the macroscale
profile, as shown in figure 15(b). Thus the advancing and
receding contact angles can be identified as the maximum and
minimum possible contact angles corresponding to minimum
energy points. However, the transition between the Wenzel
and Cassie branches still cannot be explained. Note also
that figure 15(b) explains qualitatively the hysteresis due to
the kinetic effect of the pillars but not the inherited adhesion
hysteresis, which is characterized by the molecular scale length
and cannot be captured by the microscale model.

The energy profile as a function of the contact angle
does not provide any information on how the transition
between the Cassie and Wenzel states occurs, because these
two states correspond to completely isolated branches of the
energy profile in figures 15(a) and (b). However, the energy
may depend not only upon the contact angle but also upon
micro-/nanoscale parameters, such as for example the vertical
position of the liquid—vapor interface under the droplet, A
(assuming that the interface is a horizontal plane), or similar
geometrical parameters (assuming a more complicated shape
of the interface). In order to investigate the Wenzel-Cassie
transition, the dependence of the energy upon these parameters
should be studied. We assume that the liquid—vapor interface
under the droplet is a flat horizontal plane. When such a
vapor layer thickness or the vertical position of the liquid—
vapor interface, &, is introduced, the energy can be studied
as a function of droplet shape, the contact angle, and h
(figure 15(c)). For an ideal situation the energy profile has an
abrupt minimum at the point corresponding to the Wenzel state,
which corresponds to the sudden net energy change due to
destroyed solid—vapor and liquid vapor interfaces (ys;. — ysv —
Yv = —pv(cos 6 + 1) times the interface area) (figure 15(c)).
In a more realistic case, the liquid—vapor interface cannot
be considered horizontal due to nanoscale imperfection or
dynamic effects such as capillary waves (Nosonovsky and
Bhushan 2006a). A typical size of the imperfection is much
smaller than the size of the details of the surface texture and
thus belongs to the molecular scale level. The height of the
interface, h, can now be treated as an average height. The
energy dependence upon /4 is now not as abrupt as in the
idealized case. For example, for the ‘triangular’ shape as
shown in figure 15(c), the Wenzel state may become the second
attractor for the system. It is seen that there are two equilibria
which correspond to the Wenzel and Cassie states, with the
Wenzel state corresponding to a much lower energy level. The
energy dependence upon i governs the transition between the
two states and it is observed that a much larger energy barrier
exists for the transition from Wenzel to Cassie than for the
opposite transition. This is why the first transition has never
been observed experimentally.

To summarize, we showed that the contact angle
hysteresis and Cassie—Wenzel transition cannot be determined
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Figure 16. Optical profiler image and schematic of the patterned surface (Jung and Bhushan 2007).

from the macroscale equations and are governed by micro-
and nanoscale phenomena. Our theoretical arguments
are supported by our experimental data on micropatterned
surfaces.

8.2. Experimental study of the Cassie—Wenzel transition

Bhushan and Jung (2007) studied two series of patterned
Si surfaces covered with a monolayer of hydrophobic
tetrahydroperfluorodecyltrichlorosilane (contact angle with a
nominally flat surface, 6y = 109°; advancing and receding
contact angles Gagvo 116° and 6eco 82°), formed
by flat-top cylindrical pillars. Series 1 had pillars with
diameter D 5 pum, height H 10 pum, and pitch
values P (7,7.5,10,12.5, 25, 37.5, 45, 60, and 75) pm,
while Series 2 had D 14 pm, H 30 um, P
(21, 23,26, 35,70, 105, 126, 168, and 210) pum (figure 16).
It is convenient to introduce the spacing factor Sy = D/P
(Nosonovsky and Bhushan 2007a, 2007b). The contact
angle and contact angle hysteresis of millimeter-sized water
droplets upon the samples were measured. In addition, contact
angle and the Wenzel-Cassie transition during evaporation in
ambient and evaporation/condensation of microscale droplets
in an environment scanning electron microscope (ESEM) were
studied (figure 17). We found that the contact angle hysteresis
involves two terms: the term sz(n/4)(cos Oaavo — €OS Brec)
corresponding to the adhesion hysteresis (which is found even
at a nominally flat surface and is a result of molecular-
scale imperfection) and the term H, o« D/P? corresponding
to microscale roughness and proportional to the edge line
density. Thus the contact angle hysteresis is given, based on
equation (53), by Bhushan et al (2007)

b
COS Oagy — COS bree = Zsz(cos Badvo — €08 brec0) + Hr.  (96)

The droplet radius, R, at the Cassie-Wenzel transition
was found to be proportional to P/D (or P/H) (figure 18),
which suggests that the transition is a linear ‘1D’ phenomenon
and that neither droplet droop (that would involve P?/H ) nor
droplet weight (that would involve R?) are responsible for the
transition, but rather linear geometric relations are involved.
Note that the experimental values approximately correspond to
the values of the ratio RD/P = 50 um or the total area of the
pillar tops under the droplet (7w D?/4)7 R*/ P? = 6200 pum?.

Besides the contact angle hysteresis, the asymmetry of the
Wenzel and Cassie states is the result of the wetting/dewetting
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asymmetry. While a fragile metastable Cassie state is often
observed, as well as its transition to the Wenzel state, the
opposite transition never happens. Using equations (6) and (9),
the contact angle with the patterned surfaces is given by
Bhushan and Jung (2007)

cosf = (1 +2m sz) cos 6y (Wenzel state) o7

cosf = %sz(cos Gp+1)—1 (Cassie state).  (98)

For a perfect macroscale system, the transition between the
Wenzel and Cassie states should occur only at the intersection
of the two regimes (the point at which the contact angle and
net energies of the two regimes are equal, corresponding to
S¢ = 0.51). It is observed, however, that the transition from
the metastable Cassie state to the stable Wenzel state occurs at
much lower values of the spacing factor 0.083 < S < 0.111.
As shown in figure 19(a), the stable Wenzel state (i) can
transform into the stable Cassie state with increasing St (ii).
The metastable Cassie state (iii) can abruptly transform (iv)
into the stable Wenzel state. The transition (i)—(ii) corresponds
to equal Wenzel and Cassie states free energies, whereas the
transition (iv) corresponds to a Wenzel energy much lower
than the Cassie energy and thus involves significant energy
dissipation and is irreversible. The solid and dashed straight
lines correspond to the values of the contact angle, calculated
from equations (97) and (98) using the contact angle for
a nominally flat surface, ) = 109°. The two series of
experimental data are shown with squares and diamonds.

Figure 19(b) shows the values of the advancing contact
angle plotted against the spacing factor. The solid and dashed
straight lines correspond to the values of the contact angle for
the Wenzel and Cassie states, calculated from equations (97)
and (98) using the advancing contact angle for a nominally
flat surface, 6,4y = 116°. It is observed that the calculated
values underestimate the advancing contact angle, especially
for big Sy (small distance between the pillars or pitch P). This
is understandable, because the calculation takes into account
only the effect of the contact area and ignores the effect of
roughness and edge line density (it corresponds to H; = 0 in
equation (96)), while this effect is more pronounced for high
pillar density (big S¢). In a similar manner, the contact angle is
underestimated for the Wenzel state, since the pillars constitute
a barrier to the advancing droplet.

Figure 19(c) shows the values of the contact angle after the
transition took place (dimmed blue squares and diamonds), as
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Figure 17. (a) Cassie—Wenzel transition during evaporation, (b) ESEM micrographs of microdroplets which grow and merge during
condensation; however, no transition from the Wenzel to the Cassie regime takes place. The Cassie—Wenzel transition is irreversible due to the
asymmetry of wetting and dewetting (Jung and Bhushan 2007).
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Figure 18. (a) Contact angle hysteresis as a function of St for the
first (squares) and second (diamonds) series of experiments
compared with the theoretically predicted values of

€08 Oagy — €OS bree = (D/ P)? (77 /4) (€O baayo — €08 brecg) + (D / P)?,
where ¢ is a proportionality constant. It is observed that when only
the adhesion hysteresis/interface energy term is considered (¢ = 0)
the theoretical values are underestimated by about a half, whereas
¢ = 0.5 provides a good fit. Therefore, the contribution of the
adhesion hysteresis is of the same order of magnitude as the
contribution of kinetic effects. (b) Droplet radius, R, for the
Cassie—Wenzel transition as a function of P/D = 1/S;. Itis
observed that the transition takes place at a constant value of
RD/P ~ 50 um (dashed line). This shows that the transition is a
linear phenomenon (Nosonovsky and Bhushan 2007c).

it was observed during evaporation in the ESEM. For the both
series, the values almost coincided. For comparison, the values
of the receding contact angle measured for millimeter-sized
water droplets are also shown (squares and diamonds), since
evaporation constitutes removal of liquid and thus the contact
angle during evaporation should be compared with the receding
contact angle. The solid and dashed straight lines correspond to
the values of the contact angle, calculated from equations (97)
and (98) using the receding contact angle for a nominally
flat surface, G0 = 82°. Figure 19(c) demonstrates a good
agreement between the experimental data and equations (97)
and (98).

We showed in the present section that an abrupt transition
from the metastable Cassie to the Wenzel wetting regime is
found for micropatterned surfaces. The transition can be
observed during microdroplet evaporation in the ESEM. The
droplet radius at the transition is linearly proportional to the
pitch between pillars divided by their diameter. This suggests
that interactions at the perimeter of the droplet (rather at the
bulk area beneath the droplet) dominate in the transition. We
showed also that the transition cannot be predicted from the
macroscale equations for the contact angle and the contact
angle hysteresis, such as equations (97) and (98), since it
involves micro- and nanoscale interactions. We found also
that the contact angle hysteresis can be explained as a result
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Figure 19. Theoretical (solid and dashed) and experimental (squares
for the first series, diamonds for the second series). (a) Contact angle
as a function of the spacing factor. (b) Advancing contact angle.

(c) Receding contact angle and values of the contact angle observed
after the transition during evaporation (shaded) (Nosonovsky and
Bhushan 2007¢).

of two factors, which act simultaneously. First, the changing
contact area affects the hysteresis, since a certain value of the
contact angle hysteresis is inherent for even a nominally flat
surface. Decreasing the contact area by increasing the pitch
between the pillars leads to a proportional decrease of the
hysteresis. This effect is clearly proportional to the contact
area between the solid surface and the liquid droplet. Second,
edges of the pillar tops prevent the motion of the triple line.
This roughness effect is proportional to the contact line density
and its contribution was, in our experiment, comparable with
the contact area effect. Interestingly, the effect of the edges is
much more significant for the advancing than for the receding
contact angle.
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8.3. Discussion

We investigated the Cassie—Wenzel wetting regime transition
of micropatterned superhydrophobic surfaces by water droplets
and found several effects specific to the multiscale character
of this process. First, we discussed applicability of the
Wenzel and Cassie equations for average surface roughness
and heterogeneity. These equations relate the local contact
angle with the apparent contact angle of a rough/heterogeneous
surface. However, it is not obvious what should be the
size of roughness/heterogeneity averaging, since the triple
line, at which the contact angle is defined, has two very
different scale lengths: its width is of molecular size scale
while its length is of the order of the size of the droplet
(that is, microns or millimeters). We presented an argument
that in order for the averaging to be valid, the roughness
details should be small compared to the size of the droplet
(and not the molecular size). We showed that while for
the uniform roughness/heterogeneity the Wenzel and Cassie
equations can be applied, for a more complicated case of non-
uniform heterogeneity, the generalized equations should be
used. The proposed generalized Cassie—Wenzel equations are
consistent with a broad range of available experimental data.
The generalized equations are valid both in the cases when the
classical Wenzel and Cassie equations can be applied as well
as in the cases when they fail.

The macroscale contact angle hysteresis and Cassie—
Wenzel transition cannot be determined from the macroscale
equations and are governed by micro- and nanoscale effects,
so wetting is a multiscale phenomenon. The Kkinetic
effects associated with the contact angle hysteresis should
be studied at the microscale, whereas the effects of the
adhesion hysteresis and the Cassie—Wenzel transition involve
processes at the nanoscale.  Our theoretical arguments
are supported by our experimental data on micropatterned
surfaces.  The experimental study of the contact angle
hysteresis demonstrates that two different processes are
involved: the changing solid-liquid area of contact and pinning
of the triple line. The latter effect is more significant for
the advancing than for the receding contact angle. The
transition between wetting states was observed for evaporating
microdroplets in ESEM and the droplet radius scales well with
the geometric parameters of the micropattern. These findings
provide new insights into the fundamental mechanisms of
wetting and can lead to creation of successful non-adhesive
surfaces.

9. Capillary adhesion force due to the meniscus

When two solids come into contact, a meniscus can form
due to condensation of liquid or because the liquid film may
be present initially, if the liquid is wetting. For non-wetting
liquids, meniscus will not be formed. The meniscus causes
an increase in the friction force. In this section the effect of
surface roughness on the meniscus force will be considered
for the case of a sphere in contact with a flat surface (single
asperity contact) and for the case of multiple-asperity contact.
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Optimized surfaces

Hemispherically topped cylindrical asperities

Hemispherically topped pyramidal asperities

N

re

Figure 20. Optimized spaced roughness
distribution—hemispherically topped cylindrical asperities and
pyramidal asperities with square foundation and rounded tops. A
square base gives a higher packing density but introduces undesirable
sharp edges (Nosonovsky and Bhushan 2005).

vd

9.1. Sphere in contact with a smooth surface

Consider a sphere with radius R in contact with a flat surface
with a meniscus (figure 20(a)). The shape and size of the
meniscus, as well as the total energy of the system, depend
on the separation distance s between the flat surface and the
center of the sphere. The normal meniscus force Fy,, which
acts upon the sphere and the flat surface, can be calculated as
the derivative of the energy Eio by s:

dE
Fn = .
m ds

99)

There are two solid-liquid interfaces, with the sphere and with
the flat surface. The areas of these interfaces are approximately
equal to ma?, where a is the meniscus radius. Assuming that
the ratio a/R is small and A; 5 < AgL, the total energy Eio is
equal to the sum of the surface energies at the solid-liquid (SL)
interface. Based on these assumptions, Ey, can be calculated
as

E = ma*(ysL1 — Ysa1 + ¥si2 — Vsa2)

= ma*yLa(cos b + cos 6;) (100)

where the indices 1 and 2 correspond to the sphere and the
flat surface, and a is defined in the figure 20 (Nosonovsky and
Bhushan 2005). The volume of liquid V is a function of s and
a and is given as the sum of the cylindrical volume with height
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s + a?/(2R) and cross-sectional area 7a* minus a volume of

the spherical segment of height a®/(2R)

wat

V =ma’s + —

TS (101)

The volume of the liquid remains constant during the contact,
so equation (101) may be viewed as a quadratic equation for
a?, which is solved as

a*> = —2Rs £ 2R\/s> + V /(7 R).

The derivative of a® by s, d(a®)/ds for the sphere touching the
plane (s = 0) is given as

(102)

da?

— = —2R.
ds

(103)
By using the derivative of equation (100) and the expression in
equation (103) in equation (99), we get

Fin =21 Ry a(cos 0 + cos 6,). (104)

Equation (104) (also known as equation for the Laplace
pressure) provides us with the value of the normal force due
to the meniscus. If the sphere and surface are rough, roughness
factors of Ry and Ry, respectively, must be taken into account

Fon =27 Ry a1 (Rp cos 01 + Ry cos 6;). (105)

In the presence of a meniscus, the friction force is given
by Bhushan (1999, 2002).

F=pW+ Fp). (106)

The coefficient of friction in the presence of the meniscus
force, [iwet, 1S calculated using only the applied normal load,
as usually measured in the experiments

Mwet = /’L(

Equation (107) shows that (i is greater than u, because Fi,
is not taken into account for calculation of the normal load in
the wet contact.

The effect of meniscus on friction force for different
surface roughnesses is presented in figure 20(b). It is
observed that a roughness factor of Ry 2 may result in a
significant change in the friction force due to the meniscus. In
applications, it is usually desirable to decrease the meniscus
forces; therefore, a smooth surface is preferable in the case of
single-asperity contact.

Fin
1+

m (107)

9.2. Multiple-asperity contact

In the case of multiple-asperity contact, a statistical approach is
used to model the contact. For a random surface with a certain
o and B*, the average peak radius R, and number of contacts
N depend on roughness due to the so-called scale effect
(Bhushan and Nosonovsky 2003). Bhushan and Nosonovsky
(2004) showed that the average peak radius R}, is related to o

27

(a)
Air N ' 4;.- Liquid
7777777777
Solid
(b)
BQ = 300
........... 0y =60°

F (mN)
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~7" .
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Figure 21. (a) Meniscus formation during wet contact of a flat
surface with a sphere. (b) Dependence of the friction force (F) on
the normal load (W) for single-asperity contact, y;, = 0.073 T m~>
(water), R = 1 mm, u = 0.5, for different values of Ry = Ry = Rp,
6y = 0, = 6, (Nosonovsky and Bhushan 2005).

and B*, whereas the number of contacts, for moderate loads, is
proportional to the load, divided by o and §*

()

R, (108)

N (109)

W
oB*
For asperities of equal peak radius R, the meniscus force is
given by Tian and Bhushan (1996), Bhushan (1999, 2002)

Fn =27 Ryya(cos 0 + cosr) N
*
o'

yLa(cos 6] + cos 6,). (110)

o2
The size of the menisci is comparable with the size of
individual contacts (Nosonovsky and Bhushan 2005).

We consider a rough surface which consists of short-
wavelength roughness superimposed over long-wavelength
roughness with a typical size of roughness smaller than the
meniscus size (figure 21). The nanoscale roughness of the two
bodies is characterized by the roughness factors Ry and Rp.
We further assume that asperities have an average peak radius
Iép. Substituting equation (6) into (110) results in

Fn =27 Ryya(cos 0 + cosr) N
W

X
o2

VLA (Re1 cos 6y + Rpp cos 6). (111)

The meniscus force as a function of o2/ *, which is a measure
of roughness, is presented in figure 22 (Nosonovsky and
Bhushan 2005). It is observed that with increasing roughness
o?/B*, the meniscus force decreases. A high nanoscale
roughness factor may slightly increase the meniscus force.



J. Phys.: Condens. Matter 20 (2008) 225009

M Nosonovsky and B Bhushan

(a)

77777777 T T

0.075

0.05
%P’ (nm)

Figure 22. (a) Meniscus formation during wet contact of a smooth
surface with a rough surface with a short-wavelength roughness
superimposed over long-wavelength roughness (dotted line).

(b) Dependence of the meniscus force (normalized by F,,o, meniscus
force value at 02/8* = 0.001 nm) on roughness o>/ 8%, for different
values of Ry = Ry = Rp, 6y = 0; = 6, (Nosonovsky and Bhushan
2005).

Since it is usually desirable to reduce the meniscus force, a
rough surface with high o2/B* is preferable in the case of
multiple-asperity contact (Nosonovsky and Bhushan 2005).

10. Conclusions

We presented here the theory of roughness-induced superhy-
drophobicity. The Cassie—Baxter and Wenzel equations pro-
vide the contact angle with rough and heterogeneous surfaces.
The range of applicability of these equations was discussed.
We also discussed the contact angle hysteresis and found that
it is governed by two factors: the adhesion hysteresis which is
inherently present at any surface due to the nanoscale rough-
ness or heterogeneity and the kinetic effects related to pinning
of the triple line. Two wetting regimes are possible: the homo-
geneous (Wenzel) regime and the composite (Cassie) regime
with air bubbles trapped between the solid and liquid. For prac-
tical applications, the composite regime is required, because it
results in low contact angle hysteresis and, therefore, low rates
of dissipation and low adhesion, as well as in a high contact
angle. The transition between the Cassie and Wenzel regimes
for micropatterned superhydrophobic surfaces was discussed.
While the exact micro- and nanoscale mechanism of this transi-
tion is still not clear, the experimental data suggest that simple
microscale geometrical parameters control this transition.
Wetting of a micropatterned surface is a complicated
process that involves process at several scale levels. While
the macroscale parameters such as the contact angle and
contact angle hysteresis may be governed approximately
by macroscale equations, such as equations (5)—(10), these
equations do not provide a complete description of the
macroscale behavior of a system. The contact angle hysteresis
is dependent upon micro- and nanoscale effects that control
energy dissipation due to the adhesion, kinetic effects and the
fine structure of the triple line. The Cassie-Wenzel wetting
state transition is also governed by these micro- and nanoscale
effects as well as by dynamic effects such as capillary waves.
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Furthermore, the very concept of the contact angle is relevant
only at the macroscale, and to some extent at the microscale,
while at the lower scale such effects as layer and precursor
formation, disjoining pressure, surface heterogeneity, contact
line tension, and a finite thickness of the liquid—vapor interface
dominate. Therefore, despite its apparent simplicity, a droplet
upon a rough surface constitutes a multiscale system. In
order to control wetting, it is necessary to control parameters
at different scale levels. It is not surprising that biological
superhydrophobic surfaces have roughnesses at different scale
lengths.

Water-repellent non-adhesive surfaces are required for
many tribological applications. We discussed the dependence
of the meniscus force, which is often the principal component
of the friction force, upon roughness.
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